Skip to main content

A Novel Computational Method for Deriving Protein Secondary Structure Topologies Using Cryo-EM Density Maps and Multiple Secondary Structure Predictions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Abstract

A key idea in de novo secondary structure topology determination methods is to calculate an optimal mapping between the observed secondary structure traces in a Cryo-EM density image and the predicted secondary structures on the protein sequence. The problem becomes much more complicated in presence of multiple secondary structure predictions for the protein sequence (for example those predicted by different prediction methods). We present a novel computational method that elegantly and efficiently solves the problem of dealing with multiple secondary structure predictions and calculating the optimal mapping. The proposed method uses a two-step approach – it first uses the consensus positions of the secondary structures to produce top K topologies, and then it uses a dynamic programming method to find the optimal placement for the secondary structure traces of the density image. The method was tested using twelve proteins of three types. We observed that the rank of the true topologies is consistently improved with the use of multiple secondary structure predictions over single prediction. The results show that the algorithm is robust and works well even in presence of errors/misses in predicted secondary structures from the image or the sequence. The results also show that the algorithm is efficient and is able to handle proteins with as many as thirty-three helices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: Semi-automated software for high resolution single particle reconstructions. J. Struct. Biol. 128(1), 82–97 (1999)

    Article  Google Scholar 

  2. Si, D., He, J.: Beta-sheet Detection and Representation from Medium Resolution Cryo-EM Density Maps. In: BCB 2013: Proceedings of ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, Washington, D.C, September 22-25 (2013)

    Google Scholar 

  3. Al Nasr, K., Ranjan, D., Zubair, M., et al.: Solving the Secondary Structure Matching Problem in Cryo-EM De Novo Modeling Using a Constrained k-Shortest Path Graph Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics 11(2), 419–430 (2014)

    Article  Google Scholar 

  4. Simossis, V.A., Heringa, J.: The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods. Computational Biology and Chemistry 28(5-6), 351–366 (2004)

    Article  MATH  Google Scholar 

  5. Cuff, J.A., Clamp, M.E., Siddiqui, A.S., et al.: JPred: a consensus secondary structure prediction server. Bioinformatics 14(10), 892–893 (1998)

    Article  Google Scholar 

  6. Si, D., He, J.: Tracing beta-strands using strandtwister from cryo-EM density maps at medium resolutions. Structure 22(11), 1665–1676 (2014)

    Article  Google Scholar 

  7. McGuffin, L.J., Bryson, K., Jones, D.T.: The PSIPRED protein structure prediction server. Bioinformatics 16(4), 404–405 (2000)

    Article  Google Scholar 

  8. Chiu, W., Baker, M.L., Jiang, W., et al.: Electron cryomicroscopy of biological machines at subnanometer resolution. Structure 13(3), 363–372 (2005)

    Article  Google Scholar 

  9. Anger, A.M., Armache, J.P., Berninghausen, O., et al.: Structures of the human and Drosophila 80S ribosome. Nature 497(7447), 80–85 (2013)

    Article  Google Scholar 

  10. Jiang, W., Baker, M.L., Jakana, J., et al.: Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451(7182), 1130–1134 (2008)

    Article  Google Scholar 

  11. Zhang, X.K., Ge, P., Yu, X.K., et al.: Cryo-EM structure of the mature dengue virus at 3.5-angstrom resolution. Nature Structural & Molecular Biology 20(1), 105–110 (2013)

    Article  Google Scholar 

  12. Chan, K.-Y., Trabuco, L.G., Schreiner, E., et al.: Cryo-Electron Microscopy Modeling by the Molecular Dynamics Flexible Fitting Method. Biopolymers 97(9), 678–686 (2012)

    Article  Google Scholar 

  13. Schröder, G.F., Brunger, A.T., Levitt, M.: Combining Efficient Conformational Sampling with a Deformable Elastic Network Model Facilitates Structure Refinement at Low Resolution. Structure 15(12), 1630–1641 (2007)

    Article  Google Scholar 

  14. Lasker, K., Forster, F., Bohn, S., et al.: Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. USA 109(5), 1380–1387 (2012)

    Article  Google Scholar 

  15. Zhang, J., Baker, M.L., Schroder, G.F., et al.: Mechanism of folding chamber closure in a group II chaperonin. Nature 463(7279), 379–383 (2010)

    Article  Google Scholar 

  16. Frishman, D., Argos, P.: Seventy-five percent accuracy in protein secondary structure prediction. Proteins: Structure, Function, and Bioinformatics 27(3), 329–335 (1997)

    Article  Google Scholar 

  17. Pettersen, E.F., Goddard, T.D., Huang, C.C., et al.: UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)

    Article  Google Scholar 

  18. Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate-resolution density maps. Structure 15(1), 7–19 (2007)

    Article  Google Scholar 

  19. Del Palu, A., He, J., Pontelli, E., et al.: Identification of Alpha-Helices from Low Resolution Protein Density Maps. In: Proceeding of Computational Systems Bioinformatics Conference(CSB), pp. 89–98 (2006)

    Google Scholar 

  20. Jiang, W., Baker, M.L., Ludtke, S.J., et al.: Bridging the information gap: computational tools for intermediate resolution structure interpretation. J. Mol. Biol. 308(5), 1033–1044 (2001)

    Article  Google Scholar 

  21. Kong, Y., Ma, J.: A structural-informatics approach for mining beta-sheets: locating sheets in intermediate-resolution density maps. J. Mol. Biol. 332(2), 399–413 (2003)

    Article  Google Scholar 

  22. Rusu, M., Wriggers, W.: Evolutionary bidirectional expansion for the tracing of alpha helices in cryo-electron microscopy reconstructions. J. Struct. Biol. 177(2), 410–419 (2012)

    Article  Google Scholar 

  23. Si, D., Ji, S., Nasr, K.A., et al.: A machine learning approach for the identification of protein secondary structure elements from electron cryo-microscopy density maps. Biopolymers 97(9), 698–708 (2012)

    Article  Google Scholar 

  24. Si, D., He, J.: Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions. Structure (October 8, 2014)

    Google Scholar 

  25. Al Nasr, K., Ranjan, D., Zubair, M., et al.: Ranking Valid Topologies of the Secondary Structure Elements Using a Constraint Graph. Journal of Bioinformatics and Computational Biology 09(03), 415–430 (2011)

    Article  Google Scholar 

  26. Al Nasr, K., Ranjan, D., Zubair, M., et al.: Solving the secondary structure matching problem in de novo modeling using a constrained K-shortest path graph algorithm. IEEE Transaction of Computational Biology and Bioinformatics 11(2), 419–430 (2014)

    Article  Google Scholar 

  27. Pollastri, G., McLysaght, A.: Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21(8), 1719–1720 (2005)

    Article  Google Scholar 

  28. Przybylski, D., Rost, B.: Alignments grow, secondary structure prediction improves. Proteins 46(2), 197–205 (2002)

    Article  Google Scholar 

  29. Ward, J.J., McGuffin, L.J., Buxton, B.F., et al.: Secondary structure prediction with support vector machines. Bioinformatics 19(13), 1650–1655 (2003)

    Article  Google Scholar 

  30. Baker, M.L., Baker, M.R., Hryc, C.F., et al.: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps. Biopolymers 97(9), 655–668 (2012)

    Article  Google Scholar 

  31. Biswas, A., Si, D., Al Nasr, K., et al.: Improved efficiency in cryo-EM secondary structure topology determination from inaccurate data. J. Bioinform. Comput. Biol. 10(3), 1242006 (2012)

    Article  Google Scholar 

  32. McKnight, A., Si, D., Al Nasr, K., et al.: Estimating loop length from CryoEM images at medium resolutions. BMC Structural Biology 13(suppl. 1), S5 (2013)

    Google Scholar 

  33. Al Nasr, K., Liu, C., Rwebangira, M., et al.: Intensity-Based Skeletonization of CryoEM Grayscale Images Using a True Segmentation-Free Algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 10(5), 1289–1298 (2013)

    Article  Google Scholar 

  34. Abeysinghe, S., Ju, T., Baker, M.L., et al.: Shape modeling and matching in identifying 3D protein structures. Computer Aided-design 40, 708–720 (2008)

    Article  Google Scholar 

  35. Lindert, S., Staritzbichler, R., Wötzel, N., et al.: EM-fold: De novo folding of alpha-helical proteins guided by intermediate-resolution electron microscopy density maps. Structure 17(7), 990–1003 (2009)

    Article  Google Scholar 

  36. Adamczak, R., Porollo, A., Meller, J.: Combining prediction of secondary structure and solvent accessibility in proteins. Proteins: Structure, Function, and Bioinformatics 59(3), 467–475 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Biswas, A., Ranjan, D., Zubair, M., He, J. (2015). A Novel Computational Method for Deriving Protein Secondary Structure Topologies Using Cryo-EM Density Maps and Multiple Secondary Structure Predictions. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics