Skip to main content

Zinc Protoporphyrin Attenuates White Matter Injury after Intracerebral Hemorrhage

  • Chapter
Book cover Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Intracerebral hemorrhage (ICH)-induced white matter injury has not been well studied. The objective of this study was to examine the effect of zinc protoporphyrin (ZnPP) on white matter injury induced by ICH. This study was divided into two parts. In the first part, rats received either a needle insertion (sham) or 100 μl autologous blood into the right basal ganglia. The rats were euthanized at 1, 3, 7, 14, or 28 days later for myelin basic protein (MBP) measurement. In the second part, rats had intracerebral infusion of 100 μl autologous blood, and an intraperitoneal osmotic mini-pump was implanted immediately after ICH to deliver vehicle or ZnPP (1 nmol/h), a heme oxygenase inhibitor, for up to 14 days. Rats were euthanized at day 28 for MBP staining. The number of MBP-labeled fiber bundles and their area were determined. The time-course showed that the white matter was lost in the ipsilateral basal ganglia from day 1 to day 28 after ICH. The number of MBP-labeled bundles and their area were significantly lower 2 weeks after ICH compared with sham-operated rats (p < 0.05). Systemic treatment with ZnPP attenuated the loss of MBP-labeled bundles (p < 0.01) and area (p < 0.01). In conclusion, marked white matter injury occurs after ICH. ZnPP reduces white matter injury, suggesting a role of heme degradation products in ICH-induced white matter damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng Y, Xi G, Jin H, Keep RF, Feng J, Hua Y (2014) Thrombin-induced cerebral hemorrhage: role of protease-activated receptor-1. Transl Stroke Res 5:472–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Gong Y, Tian H, Xi G, Keep RF, Hoff JT, Hua Y (2006) Systemic zinc protoporphyrin administration reduces intracerebral hemorrhage-induced brain injury. Acta Neurochir Suppl 96:232–236

    Article  CAS  PubMed  Google Scholar 

  3. Hua Y, Nakamura T, Keep R, Wu J, Schallert T, Hoff J, Xi G (2006) Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg 104:305–312

    Article  CAS  PubMed  Google Scholar 

  4. Huang F, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293

    Article  PubMed  Google Scholar 

  5. Jin H, Xi G, Keep RF, Wu J, Hua Y (2013) DARPP-32 to quantify intracerebral hemorrhage-induced neuronal death in basal Ganglia. Transl Stroke Res 4:130–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    Article  CAS  PubMed  Google Scholar 

  7. Koeppen AH, Dickson AC, Smith J (2004) Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin. J Neuropathol Exp Neurol 63:587–597

    CAS  PubMed  Google Scholar 

  8. Kurumatani T, Kudo T, Ikura Y, Takeda M (1998) White matter changes in the gerbil brain under chronic cerebral hypoperfusion. Stroke 29:1058–1062

    Article  CAS  PubMed  Google Scholar 

  9. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Ann Rev Pharmacol Toxicol 37:517–554

    Article  CAS  Google Scholar 

  10. Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G (2003) Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. Neurosurg Focus 15:ECP4

    PubMed  Google Scholar 

  11. Pandey AS, Xi G (2014) Intracerebral hemorrhage: a multimodality approach to improving outcome. Transl Stroke Res 5:313–315

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sharp FR, Zhan X, Liu DZ (2013) Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res 4:685–692

    Article  CAS  PubMed  Google Scholar 

  13. Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, Sharp FR (1998) Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cerebral Blood Flow Metab 18:257–273

    Article  CAS  Google Scholar 

  14. Wagner KR, Hua Y, de Courten-Myers GM, Broderick JP, Nishimura RN, Lu SY, Dwyer BE (2000) Tin-mesoporphyrin, a potent heme oxygenase inhibitor, for treatment of intracerebral hemorrhage: in vivo and in vitro studies. Cell Mol Biol 46:597–608

    CAS  PubMed  Google Scholar 

  15. Wu J, Hua Y, Keep R, Schallert T, Hoff J, Xi G (2002) Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res 953:45

    Article  CAS  PubMed  Google Scholar 

  16. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  17. Xi G, Strahle J, Hua Y, Keep RF (2014) Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 115:45–63

    Article  PubMed  Google Scholar 

  18. Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G (2014) Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke 45:290–292

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by grants NS-073595, NS-079157 and NS-084049 from the National Institutes of Health (NIH) and 973 Program-2014CB541600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Hua MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gu, Y., Gong, Y., Liu, Wq., Keep, R.F., Xi, G., Hua, Y. (2016). Zinc Protoporphyrin Attenuates White Matter Injury after Intracerebral Hemorrhage. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics