Skip to main content

Neurotrophic Properties, Chemosensory Responses and Neurogenic Niche of the Human Carotid Body

  • Chapter
Arterial Chemoreceptors in Physiology and Pathophysiology

Abstract

The carotid body (CB) is a polymodal chemoreceptor that triggers the hyperventilatory response to hypoxia necessary for the maintenance of O2 homeostasis essential for the survival of organs such as the brain or heart. Glomus cells, the sensory elements in the CB, are also sensitive to hypercapnia, acidosis and, although less generally accepted, hypoglycemia. Current knowledge on CB function is mainly based on studies performed on lower mammals, but the information on the human CB is scant. Here we describe the structure, neurotrophic properties, and cellular responses to hypoxia and hypoglycemia of CBs dissected from human cadavers. The adult CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. As reported for other mammalian species, glomus cells responded to hypoxia by external Ca2+-dependent increase of cytosolic [Ca2+] and quantal catecholamine release. Human glomus cells are also responsive to hypoglycemia and together the two stimuli, hypoxia and hypoglycemia, can potentiate each other’s effects. The chemo-sensory responses of glomus cells are also preserved at an advanced age. Interestingly, a neurogenic niche similar to that recently described in rodents is also preserved in the adult human CB. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CB:

carotid body

GDNF:

glial cell line-derived neurotrophic factor

TH:

tyrosine hydroxylase

GFAP:

glial fibrillary acidic protein

DDC:

dopa-decarboxylase

DAPI:

4,6-diamidino-2-phenylindole

BDNF:

brain derived neurotrophic factor

IGF-1:

insulin-like growth factor-1

HVA:

Hypoxic ventilatory acclimatization

References

  • Alvarez-Buylla R, de Alvarez-Buylla ER (1988) Carotid sinus receptors participate in glucose homeostasis. Respir Physiol 72(3):347–359

    PubMed  CAS  Google Scholar 

  • Arias-Stella J, Valcarcel J (1976) Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Hum Pathol 7(4):361–373

    PubMed  CAS  Google Scholar 

  • Arjona V, Minguez-Castellanos A, Montoro RJ, Ortega A, Escamilla F, Toledo-Aral JJ, Pardal R, Mendez-Ferrer S, Martin JM, Perez M, Katati MJ, Valencia E, Garcia T, Lopez-Barneo J (2003) Autotransplantation of human carotid body cell aggregates for treatment of Parkinson’s disease. Neurosurgery 53(2):321–328; discussion 328-330

    PubMed  Google Scholar 

  • Bin-Jaliah I, Maskell PD, Kumar P (2004) Indirect sensing of insulin-induced hypoglycaemia by the carotid body in the rat. J Physiol 556(Pt 1):255–266

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buckler K, Honore E (2004) Molecular strategies for studying oxygen-sensitive K+ channels. Methods Enzymol 381:233–256

    PubMed  CAS  Google Scholar 

  • Chao CC, Lee EH (1999) Neuroprotective mechanism of glial cell line-derived neurotrophic factor on dopamine neurons: role of antioxidation. Neuropharmacology 38(6):913–916

    PubMed  CAS  Google Scholar 

  • Chen J, He L, Dinger B, Stensaas L, Fidone S (2002) Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 282(6):L1314–L1323

    PubMed  CAS  Google Scholar 

  • Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S (2007) Effect of the endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am J Physiol Lung Cell Mol Physiol 292(5):L1257–L1262

    PubMed  CAS  Google Scholar 

  • Cheng H, Fu YS, Guo JW (2004) Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus. Hippocampus 14(1):77–86

    PubMed  CAS  Google Scholar 

  • Conde SV, Peers C (2013) Carotid body chemotransduction gets the human touch. J Physiol 591(Pt 24):6131–6132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Conde SV, Obeso A, Gonzalez C (2007) Low glucose effects on rat carotid body chemoreceptor cells’ secretory responses and action potential frequency in the carotid sinus nerve. J Physiol 585(Pt 3):721–730

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cramer JA, Wiggins RH, Fudim M, Engelman ZJ, Sobotka PA, Shah LM (2014) Carotid body size on CTA: correlation with comorbidities. Clin Radiol 69(1):e33–e36

    PubMed  CAS  Google Scholar 

  • Di Giulio C, Zara S, Cataldi A, Porzionato A, Pokorski M, De Caro R (2012) Human carotid body HIF and NGB expression during human development and aging. Adv Exp Med Biol 758:265–271

    PubMed  Google Scholar 

  • Erickson JT, Brosenitsch TA, Katz DM (2001) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. J Neurosci 21(2):581–589

    PubMed  CAS  Google Scholar 

  • Espejo EF, Montoro RJ, Armengol JA, Lopez-Barneo J (1998) Cellular and functional recovery of Parkinsonian rats after intrastriatal transplantation of carotid body cell aggregates. Neuron 20(2):197–206

    PubMed  CAS  Google Scholar 

  • Fagerlund MJ, Kahlin J, Ebberyd A, Schulte G, Mkrtchian S, Eriksson LI (2010) The human carotid body: expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 113(6):1270–1279

    PubMed  Google Scholar 

  • Fitzgerald RS, Shirahata M, Chang I, Kostuk E (2009) The impact of hypoxia and low glucose on the release of acetylcholine and ATP from the incubated cat carotid body. Brain Res 1270:39–44

    PubMed  CAS  Google Scholar 

  • Gallego-Martin T, Fernandez-Martinez S, Rigual R, Obeso A, Gonzalez C (2012) Effects of low glucose on carotid body chemoreceptor cell activity studied in cultures of intact organs and in dissociated cells. Am J Physiol Cell Physiol 302(8):C1128–C1140

    PubMed  CAS  Google Scholar 

  • Garcia-Fernandez M, Ortega-Saenz P, Castellano A, Lopez-Barneo J (2007) Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes 56(12):2893–2900

    PubMed  CAS  Google Scholar 

  • Heath D, Edwards C, Harris P (1970) Post-mortem size and structure of the human carotid body. Thorax 25(2):129–140

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hidalgo-Figueroa M, Bonilla S, Gutierrez F, Pascual A, Lopez-Barneo J (2012) GDNF is predominantly expressed in the PV+ neostriatal interneuronal ensemble in normal mouse and after injury of the nigrostriatal pathway. J Neurosci 32(3):864–872

    PubMed  CAS  Google Scholar 

  • Iturriaga R (2013) Intermittent hypoxia: endothelin-1 and hypoxic carotid body chemosensory potentiation. Exp Physiol 98(11):1550–1551

    PubMed  CAS  Google Scholar 

  • Izal-Azcarate A, Belzunegui S, San Sebastian W, Garrido-Gil P, Vazquez-Claverie M, Lopez B, Marcilla I, Luquin MA (2008) Immunohistochemical characterization of the rat carotid body. Respir Physiol Neurobiol 161(1):95–99

    PubMed  CAS  Google Scholar 

  • Kahlin J, Mkrtchian S, Ebberyd A, Hammarstedt-Nordenvall L, Nordlander B, Yoshitake T, Kehr J, Prabhakar N, Poellinger L, Fagerlund MJ, Eriksson LI (2014) The human carotid body releases acetylcholine, ATP and cytokines during hypoxia. Exp Physiol 99(8):1089–1098

    PubMed  CAS  Google Scholar 

  • Kokovay E, Temple S (2007) Taking neural crest stem cells to new heights. Cell 131(2):234–236

    PubMed  CAS  Google Scholar 

  • Koyama Y, Coker RH, Stone EE, Lacy DB, Jabbour K, Williams PE, Wasserman DH (2000) Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 49(9):1434–1442

    PubMed  CAS  Google Scholar 

  • Koyama Y, Coker RH, Denny JC, Lacy DB, Jabbour K, Williams PE, Wasserman DH (2001) Role of carotid bodies in control of the neuroendocrine response to exercise. Am J Physiol Endocrinol Metab 281(4):E742–E748

    PubMed  CAS  Google Scholar 

  • Kroll SL, Czyzyk-Krzeska MF (1998) Role of H2O2 and heme-containing O2 sensors in hypoxic regulation of tyrosine hydroxylase gene expression. Am J Physiol 274(1 Pt 1):C167–C174

    PubMed  CAS  Google Scholar 

  • Kumar P, Prabhakar NR (2012) Peripheral chemoreceptors: function and plasticity of the carotid body. Compr Physiol 2(1):78

    Google Scholar 

  • Lazarov NE, Reindl S, Fischer F, Gratzl M (2009) Histaminergic and dopaminergic traits in the human carotid body. Respir Physiol Neurobiol 165(2-3):131–136

    PubMed  CAS  Google Scholar 

  • Leitner ML, Wang LH, Osborne PA, Golden JP, Milbrandt J, Johnson EM Jr (2005) Expression and function of GDNF family ligands and receptors in the carotid body. Exp Neurol 191(Suppl 1):S68–S79

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J (2003) Oxygen and glucose sensing by carotid body glomus cells. Curr Opin Neurobiol 13(4):493–499

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, Pardal R, Ortega-Saenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Plant Physiol Plant Mol Biol 63:259–287

    CAS  Google Scholar 

  • Lopez-Barneo J, Ortega-Saenz P, Pardal R, Pascual A, Piruat JI (2008) Carotid body oxygen sensing. Eur Respir J 32(5):1386–1398

    PubMed  CAS  Google Scholar 

  • Lopez-Barneo J, Pardal R, Ortega-Saenz P, Duran R, Villadiego J, Toledo-Aral JJ (2009) The neurogenic niche in the carotid body and its applicability to antiparkinsonian cell therapy. J Neural Transm 116(8):975–982

    PubMed  Google Scholar 

  • Luquin MR, Montoro RJ, Guillen J, Saldise L, Insausti R, Del Rio J, Lopez-Barneo J (1999) Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 22(4):743–750

    PubMed  CAS  Google Scholar 

  • McBryde FD, Abdala AP, Hendy EB, Pijacka W, Marvar P, Moraes DJ, Sobotka PA, Paton JF (2013) The carotid body as a putative therapeutic target for the treatment of neurogenic hypertension. Nat Commun 4:2395

    PubMed  Google Scholar 

  • McGregor KH, Gil J, Lahiri S (1984) A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol 57(5):1430–1438

    PubMed  CAS  Google Scholar 

  • Minguez-Castellanos A, Escamilla-Sevilla F, Hotton GR, Toledo-Aral JJ, Ortega-Moreno A, Mendez-Ferrer S, Martin-Linares JM, Katati MJ, Mir P, Villadiego J, Meersmans M, Perez-Garcia M, Brooks DJ, Arjona V, Lopez-Barneo J (2007) Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J Neurol Neurosurg Psychiatry 78(8):825–831

    PubMed  PubMed Central  Google Scholar 

  • Mkrtchian S, Kahlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI (2012) The human carotid body transcriptome with focus on oxygen sensing and inflammation–a comparative analysis. J Physiol 590(Pt 16):3807–3819

    PubMed  CAS  PubMed Central  Google Scholar 

  • Munoz-Manchado AB, Villadiego J, Suarez-Luna N, Bermejo-Navas A, Garrido-Gil P, Labandeira-Garcia JL, Echevarria M, Lopez-Barneo J, Toledo-Aral JJ (2013) Neuroprotective and reparative effects of carotid body grafts in a chronic MPTP model of Parkinson’s disease. Neurobiol Aging 34(3):902–915

    PubMed  Google Scholar 

  • Nair S, Gupta A, Fudim M, Robinson C, Ravi V, Hurtado-Rua S, Engelman Z, Lee KS, Phillips CD, Sista AK (2013) CT angiography in the detection of carotid body enlargement in patients with hypertension and heart failure. Neuroradiology 55(11):1319–1322

    PubMed  Google Scholar 

  • Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK (1998) Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 97(10):943–945

    PubMed  CAS  Google Scholar 

  • Ortega-Saenz P, Garcia-Fernandez M, Pardal R, Alvarez E, Lopez-Barneo J (2003) Studies on glomus cell sensitivity to hypoxia in carotid body slices. Adv Exp Med Biol 536:65–73

    PubMed  CAS  Google Scholar 

  • Ortega-Saenz P, Pascual A, Gomez-Diaz R, Lopez-Barneo J (2006) Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol 128(4):405–411

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ortega-Saenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, Lopez-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135(4):379–392

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ortega-Saenz P, Pardal R, Levitsky K, Villadiego J, Munoz-Manchado AB, Duran R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordonez A, Oliver M, Toledo-Aral JJ, Lopez-Barneo J (2013) Cellular properties and chemosensory responses of the human carotid body. J Physiol 591(Pt 24):6157–6173

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pardal R, Lopez-Barneo J (2002) Low glucose-sensing cells in the carotid body. Nat Neurosci 5(3):197–198

    PubMed  CAS  Google Scholar 

  • Pardal R, Ludewig U, Garcia-Hirschfeld J, Lopez-Barneo J (2000) Secretory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc Natl Acad Sci U S A 97(5):2361–2366

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J (2007) Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell 131(2):364–377

    PubMed  CAS  Google Scholar 

  • Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11(7):755–761

    PubMed  CAS  Google Scholar 

  • Paton FR, Sobotka A, Fudim M, Engelman J, Hart CJ, McBryde D, Abdala P, Marina N, Gourine AV, Lobo M, Patel N, Burchell A, Ratcliffe L, Nightingale A (2013) The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61:8

    Google Scholar 

  • Piruat JI, Pintado CO, Ortega-Saenz P, Roche M, Lopez-Barneo J (2004) The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol 24(24):10933–10940

    PubMed  CAS  PubMed Central  Google Scholar 

  • Platero-Luengo A, Gonzalez-Granero S, Duran R, Diaz-Castro B, Piruat JI, Garcia-Verdugo JM, Pardal R, Lopez-Barneo J (2014) An O2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hypoxia. Cell 156(1-2):291–303

    PubMed  CAS  Google Scholar 

  • Pokorski M, Walski M, Dymecka A, Marczak M (2004) The aging carotid body. J Physiol Pharmacol 55(Suppl 3):107–113

    PubMed  Google Scholar 

  • Porzionato A, Macchi V, Parenti A, De Caro R (2008) Trophic factors in the carotid body. Int Rev Cell Mol Biol 269:1–58

    PubMed  CAS  Google Scholar 

  • Prabhakar NR, Semenza GL (2012) Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev 92(3):967–1003

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC, Conde SV (2013) Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes 62(8):2905–2916

    PubMed  CAS  PubMed Central  Google Scholar 

  • Saavedra A, Baltazar G, Duarte EP (2008) Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol 86(3):186–215

    PubMed  CAS  Google Scholar 

  • Schultz HD, Marcus NJ, Del Rio R (2013) Role of the carotid body in the pathophysiology of heart failure. Curr Hypertens Rep 15(4):356–362

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shamblin WR, ReMine WH, Sheps SG, Harrison EG Jr (1971) Carotid body tumor (chemodectoma). Clinicopathologic analysis of ninety cases. Am J Surg 122(6):732–739

    PubMed  CAS  Google Scholar 

  • Smith MP, Cass WA (2007) GDNF reduces oxidative stress in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 412(3):259–263

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stea A, Jackson A, Macintyre L, Nurse CA (1995) Long-term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro. J Neurosci 15(3 Pt 2):2192–2202

    PubMed  CAS  Google Scholar 

  • Teppema LJ, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90(2):675–754

    PubMed  CAS  Google Scholar 

  • Timmers HJ, Karemaker JM, Wieling W, Marres HA, Folgering HT, Lenders JW (2003) Baroreflex and chemoreflex function after bilateral carotid body tumor resection. J Hypertens 21(3):591–599

    PubMed  CAS  Google Scholar 

  • Toledo-Aral JJ, Mendez-Ferrer S, Pardal R, Echevarria M, Lopez-Barneo J (2003) Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J Neurosci 23(1):141–148

    PubMed  CAS  Google Scholar 

  • Urena J, Fernandez-Chacon R, Benot AR, Alvarez de Toledo GA, Lopez-Barneo J (1994) Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci U S A 91(21):10208–10211

    PubMed  CAS  PubMed Central  Google Scholar 

  • Villadiego J, Mendez-Ferrer S, Valdes-Sanchez T, Silos-Santiago I, Farinas I, Lopez-Barneo J, Toledo-Aral JJ (2005) Selective glial cell line-derived neurotrophic factor production in adult dopaminergic carotid body cells in situ and after intrastriatal transplantation. J Neurosci 25(16):4091–4098

    PubMed  CAS  Google Scholar 

  • Wang ZY, Olson EB Jr, Bjorling DE, Mitchell GS, Bisgard GE (2008) Sustained hypoxia-induced proliferation of carotid body type I cells in rats. J Appl Physiol (1985) 104(3):803–808

    Google Scholar 

  • Wehrwein EA, Basu R, Basu A, Curry TB, Rizza RA, Joyner MJ (2010) Hyperoxia blunts counterregulation during hypoglycaemia in humans: possible role for the carotid bodies? J Physiol 588(Pt 22):4593–4601

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353(19):2042–2055

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1):143–158

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang M, Buttigieg J, Nurse CA (2007) Neurotransmitter mechanisms mediating low-glucose signalling in cocultures and fresh tissue slices of rat carotid body. J Physiol 578(Pt 3):735–750

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to Prof. Antonio Ordoñez as well as the members of the Coordination of Transplants Unit and the Neurosurgery Department of HUVR for their collaboration in the dissection of the vascular segments used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José López-Barneo .

Editor information

Editors and Affiliations

Additional information

Funding

This research was supported by the Botín Foundation and Axontherapix. Support was also received through grants from the ‘Consejería de Salud de la Junta Andalucía’ and the Spanish Ministries of Economy and Innovation, and Health (SAF, FIS, CIBERNED and TERCEL programmes).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortega-Sáenz, P., Villadiego, J., Pardal, R., Toledo-Aral, J.J., López-Barneo, J. (2015). Neurotrophic Properties, Chemosensory Responses and Neurogenic Niche of the Human Carotid Body. In: Peers, C., Kumar, P., Wyatt, C., Gauda, E., Nurse, C., Prabhakar, N. (eds) Arterial Chemoreceptors in Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-319-18440-1_16

Download citation

Publish with us

Policies and ethics