Skip to main content

Ocular Manifestations of Inborn Errors of Metabolism

  • Chapter
  • First Online:
The Eye in Pediatric Systemic Disease

Abstract

Inborn errors of metabolism (IEM) constitute a clinically heterogeneous group of inherited disorders caused by defects that affect various metabolic processes. The incidence of IEM may exceed 1 in 800, and more than 1000 IEM are now known. Although collectively these disorders are common, they are individually rare. They remain under-diagnosed, partly owing to their rarity and also due to the non-specificity of their clinical presentation. Ocular manifestations are recognized for many IEM spanning all characterized categories of these disorders. Very frequently, the pattern of eye involvement constitutes an important diagnostic clue suggesting a narrow differential diagnosis. This chapter reviews the major IEM known to have notable eye manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garrod AE, Clarke JW. A new case of alkaptonuria. Biochem J. 1907;2(5–6):217–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ward JC. Inborn errors of metabolism of acute onset in infancy. Pediatr Rev. 1990;11(7):205–16.

    Article  CAS  PubMed  Google Scholar 

  3. Sanderson S, Green A, Preece MA, Burton H. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch Dis Child. 2006;91(11):896–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pampols T. Inherited metabolic rare disease. Adv Exp Med Biol. 2010;686:397–431.

    Article  PubMed  Google Scholar 

  5. Zinnanti WJ, Lazovic J, Housman C, et al. Mechanism of metabolic stroke and spontaneous cerebral hemorrhage in glutaric aciduria type I. Acta Neuropathol Commun. 2014;2:13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Strauss KA, Puffenberger EG, Robinson DL, Morton DH. Type I glutaric aciduria, part 1: natural history of 77 patients. Am J Med Genet C Semin Med Genet. 2003;121C(1):38–52.

    Article  PubMed  Google Scholar 

  7. Goodman SI, Markey SP, Moe PG, Miles BS, Teng CC. Glutaric aciduria; a “new” disorder of amino acid metabolism. Biochem Med. 1975;12(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  8. Haworth JC, Dilling LA, Seargeant LE. Increased prevalence of hereditary metabolic diseases among native Indians in Manitoba and northwestern Ontario. CMAJ. 1991;145(2):123–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zafeiriou DI, Zschocke J, Augoustidou-Savvopoulou P, et al. Atypical and variable clinical presentation of glutaric aciduria type I. Neuropediatrics. 2000;31(6):303–6.

    Article  CAS  PubMed  Google Scholar 

  10. Drigo P, Piovan S, Battistella PA, Della Puppa A, Burlina AB. Macrocephaly, subarachnoid fluid collection, and glutaric aciduria type I. J Child Neurol. 1996;11(5):414–7.

    Article  CAS  PubMed  Google Scholar 

  11. Woelfle J, Kreft B, Emons D, Haverkamp F. Subdural hemorrhage as an initial sign of glutaric aciduria type 1: a diagnostic pitfall. Pediatr Radiol. 1996;26(11):779–81.

    Article  CAS  PubMed  Google Scholar 

  12. Gago LC, Wegner RK, Capone Jr A, Williams GA. Intraretinal hemorrhages and chronic subdural effusions: glutaric aciduria type 1 can be mistaken for shaken baby syndrome. Retina. 2003;23(5):724–6.

    Article  PubMed  Google Scholar 

  13. Kasai K, Kon S, Sato N, et al. Case report of lymphoepithelioma-like carcinoma of the lung—lymphoid population consisting of cytotoxic T cells in resting state. Pathol Res Pract. 1999;195(11):773–9.

    Article  CAS  PubMed  Google Scholar 

  14. Knapp JF, Soden SE, Dasouki MJ, Walsh IR. A 9-month-old baby with subdural hematomas, retinal hemorrhages, and developmental delay. Pediatr Emerg Care. 2002;18(1):44–7.

    Article  PubMed  Google Scholar 

  15. Zielonka M, Braun K, Bengel A, Seitz A, Kolker S, Boy N. Severe acute subdural hemorrhage in a patient with glutaric aciduria type I after minor head trauma: a case report. J Child Neurol. 2015;30(8):1065–9.

    Article  PubMed  Google Scholar 

  16. Heringer J, Boy SP, Ensenauer R, et al. Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol. 2010;68(5):743–52.

    Article  PubMed  Google Scholar 

  17. Menkes JH, Hurst PL, Craig JM. A new syndrome: progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics. 1954;14(5):462–7.

    CAS  PubMed  Google Scholar 

  18. Menkes JH. Maple syrup disease; isolation and identification of organic acids in the urine. Pediatrics. 1959;23(2):348–53.

    CAS  PubMed  Google Scholar 

  19. Puffenberger EG. Genetic heritage of the old order Mennonites of southeastern Pennsylvania. Am J Med Genet C Semin Med Genet. 2003;121C(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  20. Carecchio M, Schneider SA, Chan H, et al. Movement disorders in adult surviving patients with maple syrup urine disease. Mov Disord. 2011;26(7):1324–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chhabria S, Tomasi LG, Wong PW. Ophthalmoplegia and bulbar palsy in variant form of maple syrup urine disease. Ann Neurol. 1979;6(1):71–2.

    Article  CAS  PubMed  Google Scholar 

  22. Burke JP, O’Keefe M, Bowell R, Naughten ER. Ophthalmic findings in maple syrup urine disease. Metab Pediatr Syst Ophthalmol. 1991;14(1):12–5.

    CAS  Google Scholar 

  23. Danias J, Raab EI, Friedman AH. Retinopathy associated with pancreatitis in a child with maple syrup urine disease. Br J Ophthalmol. 1998;82(7):841–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Indiran V, Gunaseelan RE. Neuroradiological findings in maple syrup urine disease. J Pediatr Neurosci. 2013;8(1):31–3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Strauss KA, Wardley B, Robinson D, et al. Classical maple syrup urine disease and brain development: principles of management and formula design. Mol Genet Metab. 2010;99(4):333–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002;109(6):999–1008.

    Article  PubMed  Google Scholar 

  27. Tanaka K, Budd MA, Efron ML, Isselbacher KJ. Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci U S A. 1966;56(1):236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanaka K. Isovaleric acidemia: personal history, clinical survey and study of the molecular basis. Prog Clin Biol Res. 1990;321:273–90.

    CAS  PubMed  Google Scholar 

  29. Martin-Hernandez E, Lee PJ, Micciche A, Grunewald S, Lachmann RH. Long-term needs of adult patients with organic acidaemias: outcome and prognostic factors. J Inherit Metab Dis. 2009;32(4):523–33.

    Article  CAS  PubMed  Google Scholar 

  30. Ianchulev T, Kolin T, Moseley K, Sadun A. Optic nerve atrophy in propionic acidemia. Ophthalmology. 2003;110(9):1850–4.

    Article  PubMed  Google Scholar 

  31. Williams ZR, Hurley PE, Altiparmak UE, et al. Late onset optic neuropathy in methylmalonic and propionic acidemia. Am J Ophthalmol. 2009;147(5):929–33.

    Article  CAS  PubMed  Google Scholar 

  32. Fuchs LR, Robert M, Ingster-Moati I, et al. Ocular manifestations of cobalamin C type methylmalonic aciduria with homocystinuria. J AAPOS. 2012;16(4):370–5.

    Article  PubMed  Google Scholar 

  33. Gaillard MC, Matthieu JM, Borruat FX. Retinal dysfunction in combined methylmalonic aciduria and homocystinuria (Cblc) disease: a spectrum of disorders. Klin Monbl Augenheilkd. 2008;225(5):491–4.

    Article  PubMed  Google Scholar 

  34. Gerth C, Morel CF, Feigenbaum A, Levin AV. Ocular phenotype in patients with methylmalonic aciduria and homocystinuria, cobalamin C type. J AAPOS. 2008;12(6):591–6.

    Article  PubMed  Google Scholar 

  35. Francis PJ, Calver DM, Barnfield P, Turner C, Dalton RN, Champion MP. An infant with methylmalonic aciduria and homocystinuria (cblC) presenting with retinal haemorrhages and subdural haematoma mimicking non-accidental injury. Eur J Pediatr. 2004;163(7):420–1.

    Article  PubMed  Google Scholar 

  36. Wortmann SB, Kluijtmans LA, Sequeira S, Wevers RA, Morava E. Leucine loading test is only discriminative for 3-methylglutaconic aciduria due to AUH defect. JIMD Rep. 2014;16:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Greter J, Hagberg B, Steen G, Soderhjelm U. 3-methylglutaconic aciduria: report on a sibship with infantile progressive encephalopathy. Eur J Pediatr. 1978;129(4):231–8.

    Article  CAS  PubMed  Google Scholar 

  38. Anikster Y, Kleta R, Shaag A, Gahl WA, Elpeleg O. Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews. Am J Hum Genet. 2001;69(6):1218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Costeff H, Elpeleg O, Apter N, Divry P, Gadoth N. 3-Methylglutaconic aciduria in “optic atrophy plus”. Ann Neurol. 1993;33(1):103–4.

    Article  CAS  PubMed  Google Scholar 

  40. Hagenfeldt L, Bollgren I, Venizelos N. N-acetylaspartic aciduria due to aspartoacylase deficiency—a new aetiology of childhood leukodystrophy. J Inherit Metab Dis. 1987;10(2):135–41.

    Article  CAS  PubMed  Google Scholar 

  41. Matalon R, Kaul R, Casanova J, et al. SSIEM award. Aspartoacylase deficiency: the enzyme defect in canavan disease. J Inherit Metab Dis. 1989;12 Suppl 2:329–31.

    PubMed  Google Scholar 

  42. Traeger EC, Rapin I. The clinical course of Canavan disease. Pediatr Neurol. 1998;18(3):207–12.

    Article  CAS  PubMed  Google Scholar 

  43. Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J. Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet. 1988;29(2):463–71.

    Article  CAS  PubMed  Google Scholar 

  44. Janson CG, McPhee SW, Francis J, et al. Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics. 2006;37(4):209–21.

    Article  CAS  PubMed  Google Scholar 

  45. McPhee SW, Francis J, Janson CG, et al. Effects of AAV-2-mediated aspartoacylase gene transfer in the tremor rat model of Canavan disease. Brain Res Mol Brain Res. 2005;135(1–2):112–21.

    Article  CAS  PubMed  Google Scholar 

  46. Leone P, Shera D, McPhee SW, et al. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med. 2012;4(165):165ra163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Okano Y, Eisensmith RC, Guttler F, et al. Molecular basis of phenotypic heterogeneity in phenylketonuria. N Engl J Med. 1991;324(18):1232–8.

    Article  CAS  PubMed  Google Scholar 

  48. Guldberg P, Rey F, Zschocke J, et al. A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet. 1998;63(1):71–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ledley FD, Levy HL, Woo SL. Molecular analysis of the inheritance of phenylketonuria and mild hyperphenylalaninemia in families with both disorders. N Engl J Med. 1986;314(20):1276–80.

    Article  CAS  PubMed  Google Scholar 

  50. Christ SE. Asbjorn Folling and the discovery of phenylketonuria. J Hist Neurosci. 2003;12(1):44–54.

    Article  PubMed  Google Scholar 

  51. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

    CAS  PubMed  Google Scholar 

  52. Burton BK, Leviton L, Vespa H, et al. A diversified approach for PKU treatment: routine screening yields high incidence of psychiatric distress in phenylketonuria clinics. Mol Genet Metab. 2013;108(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  53. Zwaan J. Eye findings in patients with phenylketonuria. Arch Ophthalmol. 1983;101(8):1236–7.

    Article  CAS  PubMed  Google Scholar 

  54. Jones SJ, Turano G, Kriss A, Shawkat F, Kendall B, Thompson AJ. Visual evoked potentials in phenylketonuria: association with brain MRI, dietary state, and IQ. J Neurol Neurosurg Psychiatry. 1995;59(3):260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Giovannini M, Valsasina R, Villani R, et al. Pattern reversal visual evoked potentials in phenylketonuria. J Inherit Metab Dis. 1988;11(4):416–21.

    Article  CAS  PubMed  Google Scholar 

  56. Landi A, Ducati A, Villani R, et al. Pattern-reversal visual evoked potentials in phenylketonuric children. Childs Nerv Syst. 1987;3(5):278–81.

    Article  CAS  PubMed  Google Scholar 

  57. Rubin S, Piffer AL, Rougier MB, et al. Sight-threatening phenylketonuric encephalopathy in a young adult, reversed by diet. JIMD Rep. 2013;10:83–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lidsky AS, Guttler F, Woo SL. Prenatal diagnosis of classic phenylketonuria by DNA analysis. Lancet. 1985;1(8428):549–51.

    Article  CAS  PubMed  Google Scholar 

  59. Giffin FD, Clarke JT, d’Entremont DM. Effect of dietary phenylalanine restriction on visual attention span in mentally retarded subjects with phenylketonuria. Can J Neurol Sci. 1980;7(2):127–31.

    Article  CAS  PubMed  Google Scholar 

  60. Ahmad S, Teckman JH, Lueder GT. Corneal opacities associated with NTBC treatment. Am J Ophthalmol. 2002;134(2):266–8.

    Article  PubMed  Google Scholar 

  61. Holme E, Lindstedt S. Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione). J Inherit Metab Dis. 1998;21(5):507–17.

    Article  CAS  PubMed  Google Scholar 

  62. Natt E, Kida K, Odievre M, Di Rocco M, Scherer G. Point mutations in the tyrosine aminotransferase gene in tyrosinemia type II. Proc Natl Acad Sci U S A. 1992;89(19):9297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldsmith LA, Kang E, Bienfang DC, Jimbow K, Gerald P, Baden HP. Tyrosinemia with plantar and palmar keratosis and keratitis. J Pediatr. 1973;83(5):798–805.

    Article  CAS  PubMed  Google Scholar 

  64. el-Badramany MH, Fawzy AR, Farag TI. Familial richner-Hanhart syndrome in Kuwait: twelve-year clinical reassessment by a multidisciplinary approach. Am J Med Genet. 1995;60(5):353–5.

    Article  CAS  PubMed  Google Scholar 

  65. Macsai MS, Schwartz TL, Hinkle D, Hummel MB, Mulhern MG, Rootman D. Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol. 2001;132(4):522–7.

    Article  CAS  PubMed  Google Scholar 

  66. al-Hemidan AI, al-Hazzaa SA. Richner-Hanhart syndrome (tyrosinemia type II). Case report and literature review. Ophthalmic Genet. 1995;16(1):21–6.

    Google Scholar 

  67. Sayar RB, von Domarus D, Schafer HJ, Beckenkamp G. Clinical picture and problems of keratoplasty in Richner-Hanhart syndrome (tyrosinemia type II). Ophthalmologica. 1988;197(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  68. Fernandez-Canon JM, Granadino B, Beltran-Valero de Bernabe D, et al. The molecular basis of alkaptonuria. Nat Genet. 1996;14(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  69. Garrod AE. The Lancet. The incidence of alkaptonuria: a study in chemical individuality. Nutr Rev. 1975;33(3):81–3.

    Article  CAS  PubMed  Google Scholar 

  70. Zatkova A, de Bernabe DB, Polakova H, et al. High frequency of alkaptonuria in Slovakia: evidence for the appearance of multiple mutations in HGO involving different mutational hot spots. Am J Hum Genet. 2000;67(5):1333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goicoechea De Jorge E, Lorda I, Gallardo ME, et al. Alkaptonuria in the Dominican Republic: identification of the founder AKU mutation and further evidence of mutation hot spots in the HGO gene. J Med Genet. 2002;39(7), E40.

    Article  CAS  PubMed  Google Scholar 

  72. Ptacin M, Sebastian J, Bamrah VS. Ochronotic cardiovascular disease. Clin Cardiol. 1985;8(8):441–5.

    Article  CAS  PubMed  Google Scholar 

  73. Phornphutkul C, Introne WJ, Perry MB, et al. Natural history of alkaptonuria. N Engl J Med. 2002;347(26):2111–21.

    Article  CAS  PubMed  Google Scholar 

  74. Chevez Barrios P, Font RL. Pigmented conjunctival lesions as initial manifestation of ochronosis. Arch Ophthalmol. 2004;122(7):1060–3.

    Article  PubMed  Google Scholar 

  75. Lindner M, Bertelmann T. On the ocular findings in ochronosis: a systematic review of literature. BMC Ophthalmol. 2014;14:12.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cheskes J, Buettner H. Ocular manifestations of alkaptonuric ochronosis. Arch Ophthalmol. 2000;118(5):724–5.

    Article  CAS  PubMed  Google Scholar 

  77. Sampaolesi R, Reca RM, Kaufer G. Alkaptonuria and endogenous ochronosis with dislocation of crystalline lens and secondary glaucoma. Arch Oftalmol B Aires. 1967;42(7):165–9.

    CAS  PubMed  Google Scholar 

  78. Anikster Y, Nyhan WL, Gahl WA. NTBC and alkaptonuria. Am J Hum Genet. 1998;63(3):920–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ranganath LR, Milan AM, Hughes AT, et al. Suitability of Nitisinone in Alkaptonuria 1 (SONIA 1): an international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid excretion in patients with alkaptonuria after 4 weeks of treatment. Ann Rheum Dis. 2014;75(2):362–7.

    Article  PubMed  CAS  Google Scholar 

  80. Munke M, Kraus JP, Ohura T, Francke U. The gene for cystathionine beta-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am J Hum Genet. 1988;42(4):550–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mudd SH, Finkelstein JD, Irreverre F, Laster L. Homocystinuria: an enzymatic defect. Science. 1964;143(3613):1443–5.

    Article  CAS  PubMed  Google Scholar 

  82. Gibson JB, Carson NA, Neill DW. Pathological findings in homocystinuria. J Clin Pathol. 1964;17:427–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Spaeth GL, Barber GW. Prevalence of homocystinuria among the mentally retarded: evaluation of a specific screening test. Pediatrics. 1967;40(4):586–9.

    CAS  PubMed  Google Scholar 

  84. Naughten ER, Yap S, Mayne PD. Newborn screening for homocystinuria: Irish and world experience. Eur J Pediatr. 1998;157 Suppl 2:S84–7.

    Article  PubMed  Google Scholar 

  85. Gan-Schreier H, Kebbewar M, Fang-Hoffmann J, et al. Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie cards. J Pediatr. 2010;156(3):427–32.

    Article  CAS  PubMed  Google Scholar 

  86. Skovby F, Gaustadnes M, Mudd SH. A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency. Mol Genet Metab. 2010;99(1):1–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Strauss KA, Morton DH, Puffenberger EG, et al. Prevention of brain disease from severe 5,10-methylenetetrahydrofolate reductase deficiency. Mol Genet Metab. 2007;91(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  88. Cappuccio G, Cozzolino C, Frisso G, et al. Pearls & oy-sters: familial epileptic encephalopathy due to methylenetetrahydrofolate reductase deficiency. Neurology. 2014;83(3):e41–4.

    Article  PubMed  Google Scholar 

  89. Cross HE, Jensen AD. Ocular manifestations in the Marfan syndrome and homocystinuria. Am J Ophthalmol. 1973;75(3):405–20.

    Article  CAS  PubMed  Google Scholar 

  90. Mudd SH, Skovby F, Levy HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985;37(1):1–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Harrison DA, Mullaney PB, Mesfer SA, Awad AH, Dhindsa H. Management of ophthalmic complications of homocystinuria. Ophthalmology. 1998;105(10):1886–90.

    Article  CAS  PubMed  Google Scholar 

  92. Mulvihill A, Yap S, O’Keefe M, Howard PM, Naughten ER. Ocular findings among patients with late-diagnosed or poorly controlled homocystinuria compared with a screened, well-controlled population. J AAPOS. 2001;5(5):311–5.

    Article  CAS  PubMed  Google Scholar 

  93. Hubmacher D, Cirulis JT, Miao M, Keeley FW, Reinhardt DP. Functional consequences of homocysteinylation of the elastic fiber proteins fibrillin-1 and tropoelastin. J Biol Chem. 2010;285(2):1188–98.

    Article  CAS  PubMed  Google Scholar 

  94. Devlin AM, Hajipour L, Gholkar A, Fernandes H, Ramesh V, Morris AA. Cerebral edema associated with betaine treatment in classical homocystinuria. J Pediatr. 2004;144(4):545–8.

    Article  CAS  PubMed  Google Scholar 

  95. Yap S, Rushe H, Howard PM, Naughten ER. The intellectual abilities of early-treated individuals with pyridoxine-nonresponsive homocystinuria due to cystathionine beta-synthase deficiency. J Inherit Metab Dis. 2001;24(4):437–47.

    Article  CAS  PubMed  Google Scholar 

  96. Holmgren G, Falkmer S, Hambraeus L. Plasma insulin content and glucose tolerance in homocystinuria. Ups J Med Sci. 1973;78(3):215–6.

    Article  CAS  PubMed  Google Scholar 

  97. Anteby I, Isaac M, BenEzra D. Hereditary subluxated lenses: visual performances and long-term follow-up after surgery. Ophthalmology. 2003;110(7):1344–8.

    Article  PubMed  Google Scholar 

  98. Mudd SH, Irreverre F, Laster L. Sulfite oxidase deficiency in man: demonstration of the enzymatic defect. Science. 1967;156(3782):1599–602.

    Article  CAS  PubMed  Google Scholar 

  99. Edwards MC, Johnson JL, Marriage B, et al. Isolated sulfite oxidase deficiency: review of two cases in one family. Ophthalmology. 1999;106(10):1957–61.

    Article  CAS  PubMed  Google Scholar 

  100. Lueder GT, Steiner RD. Ophthalmic abnormalities in molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. J Pediatr Ophthalmol Strabismus. 1995;32(5):334–7.

    CAS  PubMed  Google Scholar 

  101. Touati G, Rusthoven E, Depondt E, et al. Dietary therapy in two patients with a mild form of sulphite oxidase deficiency. Evidence for clinical and biological improvement. J Inherit Metab Dis. 2000;23(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  102. Shalata A, Mandel H, Reiss J, et al. Localization of a gene for molybdenum cofactor deficiency, on the short arm of chromosome 6, by homozygosity mapping. Am J Hum Genet. 1998;63(1):148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reiss J, Cohen N, Dorche C, et al. Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet. 1998;20(1):51–3.

    Article  CAS  PubMed  Google Scholar 

  104. Duran M, Beemer FA, van de Heiden C, et al. Combined deficiency of xanthine oxidase and sulphite oxidase: a defect of molybdenum metabolism or transport? J Inherit Metab Dis. 1978;1(4):175–8.

    Article  CAS  PubMed  Google Scholar 

  105. Johnson JL, Waud WR, Rajagopalan KV, Duran M, Beemer FA, Wadman SK. Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Proc Natl Acad Sci U S A. 1980;77(6):3715–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Reiss J. Genetics of molybdenum cofactor deficiency. Hum Genet. 2000;106(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  107. Parini R, Briscioli V, Caruso U, et al. Spherophakia associated with molybdenum cofactor deficiency. Am J Med Genet. 1997;73(3):272–5.

    Article  CAS  PubMed  Google Scholar 

  108. Reiss J, Christensen E, Dorche C. Molybdenum cofactor deficiency: first prenatal genetic analysis. Prenat Diagn. 1999;19(4):386–8.

    Article  CAS  PubMed  Google Scholar 

  109. Veldman A, Santamaria-Araujo JA, Sollazzo S, et al. Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics. 2010;125(5):e1249–54.

    Article  PubMed  Google Scholar 

  110. Tan WH, Eichler FS, Hoda S, et al. Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics. 2005;116(3):757–66.

    Article  PubMed  Google Scholar 

  111. Jaeken J, Detheux M, Van Maldergem L, Foulon M, Carchon H, Van Schaftingen E. 3-Phosphoglycerate dehydrogenase deficiency: an inborn error of serine biosynthesis. Arch Dis Child. 1996;74(6):542–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Snell K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv Enzyme Regul. 1984;22:325–400.

    Article  CAS  PubMed  Google Scholar 

  113. Shaheen R, Rahbeeni Z, Alhashem A, et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am J Hum Genet. 2014;94(6):898–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tabatabaie L, Klomp LW, Rubio-Gozalbo ME, et al. Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency. J Inherit Metab Dis. 2011;34(1):181–4.

    Article  CAS  PubMed  Google Scholar 

  115. de Koning TJ, Jaeken J, Pineda M, Van Maldergem L, Poll-The BT, van der Knaap MS. Hypomyelination and reversible white matter attenuation in 3-phosphoglycerate dehydrogenase deficiency. Neuropediatrics. 2000;31(6):287–92.

    Article  PubMed  Google Scholar 

  116. de Koning TJ, Klomp LW, van Oppen AC, et al. Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet. 2004;364(9452):2221–2.

    Article  PubMed  CAS  Google Scholar 

  117. De Koning TJ, Duran M, Van Maldergem L, et al. Congenital microcephaly and seizures due to 3-phosphoglycerate dehydrogenase deficiency: outcome of treatment with amino acids. J Inherit Metab Dis. 2002;25(2):119–25.

    Article  PubMed  Google Scholar 

  118. de Koning TJ, Duran M, Dorland L, et al. Beneficial effects of L-serine and glycine in the management of seizures in 3-phosphoglycerate dehydrogenase deficiency. Ann Neurol. 1998;44(2):261–5.

    Article  PubMed  Google Scholar 

  119. Mitchell GA, Brody LC, Looney J, et al. An initiator codon mutation in ornithine-delta-aminotransferase causing gyrate atrophy of the choroid and retina. J Clin Invest. 1988;81(2):630–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Barrett DJ, Bateman JB, Sparkes RS, Mohandas T, Klisak I, Inana G. Chromosomal localization of human ornithine aminotransferase gene sequences to 10q26 and Xp11.2. Invest Ophthalmol Vis Sci. 1987;28(7):1037–42.

    CAS  PubMed  Google Scholar 

  121. Simell O, Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973;1(7811):1031–3.

    Article  CAS  PubMed  Google Scholar 

  122. McCulloch JC, Arshinoff SA, Marliss EB, Parker JA. Hyperornithinemia and gyrate atrophy of the choroid and retina. Ophthalmology. 1978;85(9):918–28.

    Article  CAS  PubMed  Google Scholar 

  123. Valle D, Kaiser-Kupfer MI, Del Valle LA. Gyrate atrophy of the choroid and retina: deficiency of ornithine aminotransferase in transformed lymphocytes. Proc Natl Acad Sci U S A. 1977;74(11):5159–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Valtonen M, Nanto-Salonen K, Jaaskelainen S, et al. Central nervous system involvement in gyrate atrophy of the choroid and retina with hyperornithinaemia. J Inherit Metab Dis. 1999;22(8):855–66.

    Article  CAS  PubMed  Google Scholar 

  125. Sipila I, Simell O, Rapola J, Sainio K, Tuuteri L. Gyrate atrophy of the choroid and retina with hyperornithinemia: tubular aggregates and type 2 fiber atrophy in muscle. Neurology. 1979;29(7):996–1005.

    Article  CAS  PubMed  Google Scholar 

  126. Kaiser-Kupfer MI, Kuwabara T, Askanas V, et al. Systemic manifestations of gyrate atrophy of the choroid and retina. Ophthalmology. 1981;88(4):302–6.

    Article  CAS  PubMed  Google Scholar 

  127. Takki KK, Milton RC. The natural history of gyrate atrophy of the choroid and retina. Ophthalmology. 1981;88(4):292–301.

    Article  CAS  PubMed  Google Scholar 

  128. Sergouniotis PI, Davidson AE, Lenassi E, Devery SR, Moore AT, Webster AR. Retinal structure, function, and molecular pathologic features in gyrate atrophy. Ophthalmology. 2012;119(3):596–605.

    Article  PubMed  Google Scholar 

  129. Saito T, Hayasaka S, Yabata K, Omura K, Mizuno K, Tada K. Atypical gyrate atrophy of the choroid and retina and iminoglycinuria. Tohoku J Exp Med. 1981;135(3):331–2.

    Article  CAS  PubMed  Google Scholar 

  130. Peltola KE, Nanto-Salonen K, Heinonen OJ, et al. Ophthalmologic heterogeneity in subjects with gyrate atrophy of choroid and retina harboring the L402P mutation of ornithine aminotransferase. Ophthalmology. 2001;108(4):721–9.

    Article  CAS  PubMed  Google Scholar 

  131. Hayasaka S, Mizuno K, Yabata K, Saito T, Tada K. Atypical gyrate atrophy of the choroid and retina associated with iminoglycinuria. Arch Ophthalmol. 1982;100(3):423–5.

    Article  CAS  PubMed  Google Scholar 

  132. Bargum R. Differential diagnosis of normoornithinaemic gyrate atrophy of the choroid and retina. Acta Ophthalmol (Copenh). 1986;64(4):369–73.

    Article  CAS  Google Scholar 

  133. Inana G, Hotta Y, Zintz C, et al. Expression defect of ornithine aminotransferase gene in gyrate atrophy. Invest Ophthalmol Vis Sci. 1988;29(7):1001–5.

    CAS  PubMed  Google Scholar 

  134. O’Donnell JJ, Sipila I, Vannas A, Sandman R, Vannas-Sulonen K. Gyrate atrophy of the retina and choroid. Two methods for prenatal diagnosis. Int Ophthalmol. 1981;4(1–2):33–6.

    Article  PubMed  Google Scholar 

  135. Kaiser-Kupfer MI, Caruso RC, Valle D. Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children. Arch Ophthalmol. 2002;120(2):146–53.

    Article  PubMed  Google Scholar 

  136. Kaiser-Kupfer MI, Caruso RC, Valle D, Reed GF. Use of an arginine-restricted diet to slow progression of visual loss in patients with gyrate atrophy. Arch Ophthalmol. 2004;122(7):982–4.

    Article  PubMed  Google Scholar 

  137. Wang T, Steel G, Milam AH, Valle D. Correction of ornithine accumulation prevents retinal degeneration in a mouse model of gyrate atrophy of the choroid and retina. Proc Natl Acad Sci U S A. 2000;97(3):1224–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kaiser-Kupfer MI, Caruso RC, Valle D. Gyrate atrophy of the choroid and retina. Long-term reduction of ornithine slows retinal degeneration. Arch Ophthalmol. 1991;109(11):1539–48.

    Article  CAS  PubMed  Google Scholar 

  139. Sipila I, Valle D, Mitchell GA, Brody LC. Hyperornithinemia and gyrate atrophy: ornithine aminotransferase gene error causing a Finnish disease. Duodecim. 1994;110(7):681–6.

    CAS  PubMed  Google Scholar 

  140. Tanzer F, Firat M, Alagoz M, Erdogan H. Gyrate atrophy of the choroid and retina with hyperornithinemia, cystinuria and lysinuria responsive to vitamin B6. BMJ Case Rep. 2011;2011:bcr0720103200.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Vannas-Sulonen K, Sipila I, Vannas A, Simell O, Rapola J. Gyrate atrophy of the choroid and retina. A five-year follow-up of creatine supplementation. Ophthalmology. 1985;92(12):1719–27.

    Article  CAS  PubMed  Google Scholar 

  142. Hayasaka S, Saito T, Nakajima H, Takahashi O, Mizuno K, Tada K. Clinical trials of vitamin B6 and proline supplementation for gyrate atrophy of the choroid and retina. Br J Ophthalmol. 1985;69(4):283–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Attree O, Olivos IM, Okabe I, et al. The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature. 1992;358(6383):239–42.

    Article  CAS  PubMed  Google Scholar 

  144. Mehta ZB, Pietka G, Lowe M. The cellular and physiological functions of the Lowe syndrome protein OCRL1. Traffic. 2014;15(5):471–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lewis RA, Nussbaum RL, Brewer ED. Lowe syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews®. Seattle: University of Washington; 1993.

    Google Scholar 

  146. Kenworthy L, Charnas L. Evidence for a discrete behavioral phenotype in the oculocerebrorenal syndrome of Lowe. Am J Med Genet. 1995;59(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  147. Schneider JF, Boltshauser E, Neuhaus TJ, Rauscher C, Martin E. MRI and proton spectroscopy in Lowe syndrome. Neuropediatrics. 2001;32(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  148. Gardner RJ, Brown N. Lowe’s syndrome: identification of carriers by lens examination. J Med Genet. 1976;13(6):449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lin T, Lewis RA, Nussbaum RL. Molecular confirmation of carriers for Lowe syndrome. Ophthalmology. 1999;106(1):119–22.

    Article  CAS  PubMed  Google Scholar 

  150. Coss KP, Doran PP, Owoeye C, et al. Classical Galactosaemia in Ireland: incidence, complications and outcomes of treatment. J Inherit Metab Dis. 2013;36(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  151. Levy HL, Hammersen G. Newborn screening for galactosemia and other galactose metabolic defects. J Pediatr. 1978;92(6):871–7.

    Article  CAS  PubMed  Google Scholar 

  152. Hunter M, Heyer E, Austerlitz F, et al. The P28T mutation in the GALK1 gene accounts for galactokinase deficiency in Roma (Gypsy) patients across Europe. Pediatr Res. 2002;51(5):602–6.

    Article  CAS  PubMed  Google Scholar 

  153. Quimby BB, Alano A, Almashanu S, DeSandro AM, Cowan TM, Fridovich-Keil JL. Characterization of two mutations associated with epimerase-deficiency galactosemia, by use of a yeast expression system for human UDP-galactose-4-epimerase. Am J Hum Genet. 1997;61(3):590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bosch AM. Classical galactosaemia revisited. J Inherit Metab Dis. 2006;29(4):516–25.

    Article  CAS  PubMed  Google Scholar 

  155. Kaufman FR, Donnell GN, Roe TF, Kogut MD. Gonadal function in patients with galactosaemia. J Inherit Metab Dis. 1986;9(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  156. Waggoner DD, Buist NR, Donnell GN. Long-term prognosis in galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis. 1990;13(6):802–18.

    Article  CAS  PubMed  Google Scholar 

  157. Rubio-Gozalbo ME, Panis B, Zimmermann LJ, Spaapen LJ, Menheere PP. The endocrine system in treated patients with classical galactosemia. Mol Genet Metab. 2006;89(4):316–22.

    Article  CAS  PubMed  Google Scholar 

  158. Nelson CD, Waggoner DD, Donnell GN, Tuerck JM, Buist NR. Verbal dyspraxia in treated galactosemia. Pediatrics. 1991;88(2):346–50.

    CAS  PubMed  Google Scholar 

  159. Schweitzer-Krantz S. Early diagnosis of inherited metabolic disorders towards improving outcome: the controversial issue of galactosaemia. Eur J Pediatr. 2003;162 Suppl 1:S50–3.

    Article  CAS  PubMed  Google Scholar 

  160. Colin J, Voyer M, Thomas D, Schapira F, Satge P. Cataract due to galactokinase deficiency in a premature infant. Arch Fr Pediatr. 1976;33(1):77–82.

    CAS  PubMed  Google Scholar 

  161. Litman N, Kanter AI, Finberg L. Galactokinase deficiency presenting as pseudotumor cerebri. J Pediatr. 1975;86(3):410–2.

    Article  CAS  PubMed  Google Scholar 

  162. Huttenlocher PR, Hillman RE, Hsia YE. Pseudotumor cerebri in galactosemia. J Pediatr. 1970;76(6):902–5.

    Article  CAS  PubMed  Google Scholar 

  163. Bowling FG, Fraser DK, Clague AE, Hayes A, Morris DJ. A case of uridine diphosphate galactose-4-epimerase deficiency detected by neonatal screening for galactosaemia. Med J Aust. 1986;144(3):150–1.

    CAS  PubMed  Google Scholar 

  164. Gitzelmann R. Galactose-1-phosphate in the pathophysiology of galactosemia. Eur J Pediatr. 1995;154(7 Suppl 2):S45–9.

    Article  CAS  PubMed  Google Scholar 

  165. Ichiba Y, Namba N, Misumi H. Uridine diphosphate galactose 4-epimerase deficiency. Am J Dis Child. 1980;134(10):995.

    CAS  PubMed  Google Scholar 

  166. Henderson MJ, Holton JB, MacFaul R. Further observations in a case of uridine diphosphate galactose-4-epimerase deficiency with a severe clinical presentation. J Inherit Metab Dis. 1983;6(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  167. Holton JB, Gillett MG, MacFaul R, Young R. Galactosaemia: a new severe variant due to uridine diphosphate galactose-4-epimerase deficiency. Arch Dis Child. 1981;56(11):885–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sardharwalla IB, Wraith JE, Bridge C, Fowler B, Roberts SA. A patient with severe type of epimerase deficiency galactosaemia. J Inherit Metab Dis. 1988;11 Suppl 2:249–51.

    PubMed  Google Scholar 

  169. Burke JP, O’Keefe M, Bowell R, Naughten ER. Ophthalmic findings in classical galactosemia—a screened population. J Pediatr Ophthalmol Strabismus. 1989;26(4):165–8.

    CAS  PubMed  Google Scholar 

  170. Levy HL, Brown AE, Williams SE, de Juan Jr E. Vitreous hemorrhage as an ophthalmic complication of galactosemia. J Pediatr. 1996;129(6):922–5.

    Article  CAS  PubMed  Google Scholar 

  171. Laumonier E, Labalette P, Morisot C, Mouriaux F, Dobbelaere D, Rouland JF. Vitreous hemorrhage in a neonate with galactosemia. A case report. J Fr Ophtalmol. 2005;28(5):490–6.

    Article  CAS  PubMed  Google Scholar 

  172. Takci S, Kadayifcilar S, Coskun T, Yigit S, Hismi B. A rare galactosemia complication: vitreous hemorrhage. JIMD Rep. 2012;5:89–93.

    Article  PubMed  Google Scholar 

  173. Beutler E, Baluda MC, Sturgeon P, Day R. A new genetic abnormality resulting in galactose-1-phosphate uridyltransferase deficiency. Lancet. 1965;1(7381):353–4.

    Article  CAS  PubMed  Google Scholar 

  174. Holton JB, Allen JT, Gillett MG. Prenatal diagnosis of disorders of galactose metabolism. J Inherit Metab Dis. 1989;12 Suppl 1:202–6.

    PubMed  Google Scholar 

  175. Widger J, O’Toole J, Geoghegan O, O’Keefe M, Manning R. Diet and visually significant cataracts in galactosaemia: is regular follow up necessary? J Inherit Metab Dis. 2010;33(2):129–32.

    Article  PubMed  Google Scholar 

  176. Fletcher AL, Pennesi ME, Harding CO, Weleber RG, Gillingham MB. Observations regarding retinopathy in mitochondrial trifunctional protein deficiencies. Mol Genet Metab. 2012;106(1):18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Tyni T, Johnson M, Eaton S, Pourfarzam M, Andrews R, Turnbull DM. Mitochondrial fatty acid beta-oxidation in the retinal pigment epithelium. Pediatr Res. 2002;52(4):595–600.

    CAS  PubMed  Google Scholar 

  178. Wanders RJ, Duran M, Ijlst L, et al. Sudden infant death and long-chain 3-hydroxyacyl-CoA dehydrogenase. Lancet. 1989;2(8653):52–3.

    Google Scholar 

  179. Bresler SE, Molodkin VM, McHedlishvili BV, Flerov GN, Zamiatnin IS. Use of nuclear filters in purifying and concentrating influenza vaccine. Tr Inst Im Pastera. 1979;52:95–9.

    CAS  PubMed  Google Scholar 

  180. Jackson S, Kler RS, Bartlett K, et al. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest. 1992;90(4):1219–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wanders RJ, IJIst L, Poggi F, et al. Human trifunctional protein deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Biochem Biophys Res Commun. 1992;188(3):1139–45.

    Article  CAS  PubMed  Google Scholar 

  182. Pons R, Roig M, Riudor E, et al. The clinical spectrum of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Neurol. 1996;14(3):236–43.

    Article  CAS  PubMed  Google Scholar 

  183. den Boer ME, Ijlst L, Wijburg FA, et al. Heterozygosity for the common LCHAD mutation (1528g > C) is not a major cause of HELLP syndrome and the prevalence of the mutation in the Dutch population is low. Pediatr Res. 2000;48(2):151–4.

    Google Scholar 

  184. Piekutowska-Abramczuk D, Olsen RK, Wierzba J, et al. A comprehensive HADHA c.1528G > C frequency study reveals high prevalence of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency in Poland. J Inherit Metab Dis. 2010;33 Suppl 3:S373–7.

    Article  PubMed  Google Scholar 

  185. Zhu JM, Yang Z, Yu M, et al. Screening for the G1528C mutation in long chain fatty acid oxidation enzyme in Han nationality in Beijing population. Beijing Da Xue Xue Bao. 2005;37(1):72–4.

    CAS  PubMed  Google Scholar 

  186. den Boer ME, Wanders RJ, Morris AA, IJIst L, Heymans HS, Wijburg FA. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: clinical presentation and follow-up of 50 patients. Pediatrics. 2002;109(1):99–104.

    Article  Google Scholar 

  187. Schaefer J, Jackson S, Dick DJ, Turnbull DM. Trifunctional enzyme deficiency: adult presentation of a usually fatal beta-oxidation defect. Ann Neurol. 1996;40(4):597–602.

    Article  CAS  PubMed  Google Scholar 

  188. Tyni T, Paetau A, Strauss AW, Middleton B, Kivela T. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res. 2004;56(5):744–50.

    Article  CAS  PubMed  Google Scholar 

  189. Tyni T, Kivela T, Lappi M, Summanen P, Nikoskelainen E, Pihko H. Ophthalmologic findings in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation: a new type of hereditary metabolic chorioretinopathy. Ophthalmology. 1998;105(5):810–24.

    Article  CAS  PubMed  Google Scholar 

  190. Tyni T, Pihko H, Kivela T. Ophthalmic pathology in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation. Curr Eye Res. 1998;17(6):551–9.

    Article  CAS  PubMed  Google Scholar 

  191. Spiekerkoetter U. Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis. 2010;33(5):527–32.

    Article  CAS  PubMed  Google Scholar 

  192. Gillingham MB, Weleber RG, Neuringer M, et al. Effect of optimal dietary therapy upon visual function in children with long-chain 3-hydroxyacyl CoA dehydrogenase and trifunctional protein deficiency. Mol Genet Metab. 2005;86(1–2):124–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sturm V. Ophthalmologic abnormalities in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: presentation of a long-term survivor. Eur J Ophthalmol. 2008;18(3):476–8.

    CAS  PubMed  Google Scholar 

  194. Fahnehjelm KT, Holmstrom G, Ying L, et al. Ocular characteristics in 10 children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: a cross-sectional study with long-term follow-up. Acta Ophthalmol. 2008;86(3):329–37.

    Article  PubMed  Google Scholar 

  195. Maleki S, Gopalakrishnan S, Ghanian Z, et al. Optical imaging of mitochondrial redox state in rodent model of retinitis pigmentosa. J Biomed Opt. 2013;18(1):16004.

    Article  PubMed  CAS  Google Scholar 

  196. Carelli V, La Morgia C, Iommarini L, et al. Mitochondrial optic neuropathies: how two genomes may kill the same cell type? Biosci Rep. 2007;27(1–3):173–84.

    Article  CAS  PubMed  Google Scholar 

  197. Schrier SA, Falk MJ. Mitochondrial disorders and the eye. Curr Opin Ophthalmol. 2011;22(5):325–31.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Beretta S, Wood JP, Derham B, et al. Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber Hereditary Optic Neuropathy (LHON). Neurobiol Dis. 2006;24(2):308–17.

    Article  CAS  PubMed  Google Scholar 

  199. Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30(2):81–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Howell N, Kubacka I, Halvorson S, Howell B, McCullough DA, Mackey D. Phylogenetic analysis of the mitochondrial genomes from Leber hereditary optic neuropathy pedigrees. Genetics. 1995;140(1):285–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Man PY, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet. 2003;72(2):333–9.

    Article  CAS  Google Scholar 

  202. Sadun AA, Carelli V, Salomao SR, et al. Extensive investigation of a large Brazilian pedigree of 11778/haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol. 2003;136(2):231–8.

    Article  PubMed  Google Scholar 

  203. Kirkman MA, Yu-Wai-Man P, Korsten A, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain. 2009;132(Pt 9):2317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Harding AE, Sweeney MG, Govan GG, Riordan-Eva P. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet. 1995;57(1):77–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46(3):145–58.

    Article  CAS  PubMed  Google Scholar 

  206. Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol. 2010;55(4):299–334.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Stone EM, Newman NJ, Miller NR, Johns DR, Lott MT, Wallace DC. Visual recovery in patients with Leber’s hereditary optic neuropathy and the 11778 mutation. J Clin Neuroophthalmol. 1992;12(1):10–4.

    CAS  PubMed  Google Scholar 

  208. Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980;77(11):6715–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.

    Article  CAS  PubMed  Google Scholar 

  210. Spruijt L, Kolbach DN, de Coo RF, et al. Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am J Ophthalmol. 2006;141(4):676–82.

    Article  PubMed  Google Scholar 

  211. Puomila A, Hamalainen P, Kivioja S, et al. Epidemiology and penetrance of Leber hereditary optic neuropathy in Finland. Eur J Hum Genet. 2007;15(10):1079–89.

    Article  PubMed  Google Scholar 

  212. Mackey DA, Buttery RG. Leber hereditary optic neuropathy in Australia. Aust N Z J Ophthalmol. 1992;20(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  213. Nikoskelainen EK, Marttila RJ, Huoponen K, et al. Leber’s “plus”: neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry. 1995;59(2):160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Nikoskelainen EK, Savontaus ML, Huoponen K, Antila K, Hartiala J. Pre-excitation syndrome in Leber’s hereditary optic neuropathy. Lancet. 1994;344(8926):857–8.

    Article  CAS  PubMed  Google Scholar 

  215. Tonska K, Kodron A, Bartnik E. Genotype-phenotype correlations in Leber hereditary optic neuropathy. Biochim Biophys Acta. 2010;1797(6–7):1119–23.

    Article  CAS  PubMed  Google Scholar 

  216. Harding AE, Sweeney MG, Miller DH, et al. Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain. 1992;115(Pt 4):979–89.

    Article  PubMed  Google Scholar 

  217. Pfeffer G, Burke A, Yu-Wai-Man P, Compston DA, Chinnery PF. Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology. 2013;81(24):2073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23(1):53–89.

    Article  CAS  PubMed  Google Scholar 

  219. Nakamura M, Yamamoto M. Variable pattern of visual recovery of Leber’s hereditary optic neuropathy. Br J Ophthalmol. 2000;84(5):534–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Klopstock T, Yu-Wai-Man P, Dimitriadis K, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain. 2011;134(Pt 9):2677–86.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Sadun AA, Chicani CF, Ross-Cisneros FN, et al. Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. Arch Neurol. 2012;69(3):331–8.

    Article  PubMed  Google Scholar 

  222. Delettre-Cribaillet C, Hamel CP, Lenaers G. Optic atrophy type 1. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews®. Seattle: University of Washington; 1993.

    Google Scholar 

  223. Yu-Wai-Man P, Griffiths PG, Gorman GS, et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain. 2010;133(Pt 3):771–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Spruijt L, Smeets HJ, Hendrickx A, et al. A MELAS-associated ND1 mutation causing leber hereditary optic neuropathy and spastic dystonia. Arch Neurol. 2007;64(6):890–3.

    Article  PubMed  Google Scholar 

  225. DiMauro S, Hirano M. Melas. 1993.

    Google Scholar 

  226. Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol. 1994;9(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  227. Kaufmann P, Engelstad K, Wei Y, et al. Natural history of MELAS associated with mitochondrial DNA m.3243A > G genotype. Neurology. 2011;77(22):1965–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yatsuga S, Povalko N, Nishioka J, et al. MELAS: a nationwide prospective cohort study of 96 patients in Japan. Biochim Biophys Acta. 2012;1820(5):619–24.

    Article  CAS  PubMed  Google Scholar 

  229. de Laat P, Smeitink JA, Janssen MC, Keunen JE, Boon CJ. Mitochondrial retinal dystrophy associated with the m.3243A > G mutation. Ophthalmology. 2013;120(12):2684–96.

    Article  PubMed  Google Scholar 

  230. Fung AT, Engelbert M, Odel JG, Yannuzzi LA. Subretinal deposits, paramacular atrophy and pigmentary retinopathy in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Retin Cases Brief Rep. 2013;7(1):14–8.

    Article  PubMed  Google Scholar 

  231. Rummelt V, Folberg R, Ionasescu V, Yi H, Moore KC. Ocular pathology of MELAS syndrome with mitochondrial DNA nucleotide 3243 point mutation. Ophthalmology. 1993;100(12):1757–66.

    Article  CAS  PubMed  Google Scholar 

  232. Pulkes T, Eunson L, Patterson V, et al. The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol. 1999;46(6):916–9.

    Article  CAS  PubMed  Google Scholar 

  233. Kuchle M, Brenner PM, Engelhardt A, Naumann GO. Ocular changes in MELAS syndrome. Klin Monbl Augenheilkd. 1990;197(3):258–64.

    Article  CAS  PubMed  Google Scholar 

  234. Hsieh YT, Yang MT, Peng YJ, Hsu WC. Central retinal vein occlusion as the initial manifestation of LHON/MELAS overlap syndrome with mitochondrial DNA G13513A mutation—case report and literature review. Ophthalmic Genet. 2011;32(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  235. Kolb SJ, Costello F, Lee AG, et al. Distinguishing ischemic stroke from the stroke-like lesions of MELAS using apparent diffusion coefficient mapping. J Neurol Sci. 2003;216(1):11–5.

    Article  PubMed  Google Scholar 

  236. Hasegawa H, Matsuoka T, Goto Y, Nonaka I. Strongly succinate dehydrogenase-reactive blood vessels in muscles from patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Ann Neurol. 1991;29(6):601–5.

    Article  CAS  PubMed  Google Scholar 

  237. Filosto M, Tomelleri G, Tonin P, et al. Neuropathology of mitochondrial diseases. Biosci Rep. 2007;27(1–3):23–30.

    Article  CAS  PubMed  Google Scholar 

  238. Koga Y, Povalko N, Nishioka J, Katayama K, Kakimoto N, Matsuishi T. MELAS and L-arginine therapy: pathophysiology of stroke-like episodes. Ann N Y Acad Sci. 2010;1201:104–10.

    Article  CAS  PubMed  Google Scholar 

  239. Rodriguez MC, MacDonald JR, Mahoney DJ, Parise G, Beal MF, Tarnopolsky MA. Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders. Muscle Nerve. 2007;35(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  240. Glover EI, Martin J, Maher A, Thornhill RE, Moran GR, Tarnopolsky MA. A randomized trial of coenzyme Q10 in mitochondrial disorders. Muscle Nerve. 2010;42(5):739–48.

    Article  CAS  PubMed  Google Scholar 

  241. Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies. Curr Neurol Neurosci Rep. 2010;10(2):118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. DiMauro S, Hirano M. Mitochondrial DNA deletion syndromes. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  243. Kearns TP. External ophthalmoplegia, pigmentary degeneration of the retina, and cardiomyopathy: a newly recognized syndrome. Trans Am Ophthalmol Soc. 1965;63:559–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Kearns TP, Sayre GP. Retinitis pigmentosa, external ophthalmophegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA Arch Ophthalmol. 1958;60(2):280–9.

    Article  CAS  PubMed  Google Scholar 

  245. Remes AM, Majamaa-Voltti K, Karppa M, et al. Prevalence of large-scale mitochondrial DNA deletions in an adult Finnish population. Neurology. 2005;64(6):976–81.

    Article  CAS  PubMed  Google Scholar 

  246. Yamashita S, Nishino I, Nonaka I, Goto Y. Genotype and phenotype analyses in 136 patients with single large-scale mitochondrial DNA deletions. J Hum Genet. 2008;53(7):598–606.

    Article  CAS  PubMed  Google Scholar 

  247. Khambatta S, Nguyen DL, Beckman TJ, Wittich CM. Kearns-Sayre syndrome: a case series of 35 adults and children. Int J Gen Med. 2014;7:325–32.

    PubMed  PubMed Central  Google Scholar 

  248. Ahmad SS, Ghani SA. Kearns-Sayre syndrome: an unusual ophthalmic presentation. Oman J Ophthalmol. 2012;5(2):115–7.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Ota I, Miyake Y, Awaya S. Studies of ocular fundus and visual functions in Kearns-Sayre syndrome—with special reference to the new stage classification. Nippon Ganka Gakkai Zasshi. 1989;93(3):329–38.

    CAS  PubMed  Google Scholar 

  250. McKechnie NM, King M, Lee WR. Retinal pathology in the Kearns-Sayre syndrome. Br J Ophthalmol. 1985;69(1):63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Eagle Jr RC, Hedges TR, Yanoff M. The atypical pigmentary retinopathy of Kearns-Sayre syndrome. A light and electron microscopic study. Ophthalmology. 1982;89(12):1433–40.

    Article  PubMed  Google Scholar 

  252. Grady JP, Campbell G, Ratnaike T, et al. Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain. 2014;137(Pt 2):323–34.

    Article  PubMed  Google Scholar 

  253. Soejima K, Sakurai H, Nozaki M, et al. Surgical treatment of blepharoptosis caused by chronic progressive external ophthalmoplegia. Ann Plast Surg. 2006;56(4):439–42.

    Article  CAS  PubMed  Google Scholar 

  254. Wallace DK, Sprunger DT, Helveston EM, Ellis FD. Surgical management of strabismus associated with chronic progressive external ophthalmoplegia. Ophthalmology. 1997;104(4):695–700.

    Article  CAS  PubMed  Google Scholar 

  255. Pearson HA, Lobel JS, Kocoshis SA, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediatr. 1979;95(6):976–84.

    Article  CAS  PubMed  Google Scholar 

  256. Blaw ME, Mize CE. Juvenile Pearson syndrome. J Child Neurol. 1990;5(3):187–90.

    Article  CAS  PubMed  Google Scholar 

  257. Favareto F, Caprino D, Micalizzi C, Rosanda C, Boeri E, Mori PG. New clinical aspects of Pearson’s syndrome. Report of three cases. Haematologica. 1989;74(6):591–4.

    CAS  PubMed  Google Scholar 

  258. Kasbekar SA, Gonzalez-Martin JA, Shafiq AE, Chandna A, Willoughby CE. Corneal endothelial dysfunction in Pearson syndrome. Ophthalmic Genet. 2013;34(1–2):55–7.

    Article  PubMed  Google Scholar 

  259. Cursiefen C, Kuchle M, Scheurlen W, Naumann GO. Bilateral zonular cataract associated with the mitochondrial cytopathy of Pearson syndrome. Am J Ophthalmol. 1998;125(2):260–1.

    Article  CAS  PubMed  Google Scholar 

  260. Huttenlocher PR, Solitare GB, Adams G. Infantile diffuse cerebral degeneration with hepatic cirrhosis. Arch Neurol. 1976;33(3):186–92.

    Article  CAS  PubMed  Google Scholar 

  261. Lestienne P. Evidence for a direct role of the DNA polymerase gamma in the replication of the human mitochondrial DNA in vitro. Biochem Biophys Res Commun. 1987;146(3):1146–53.

    Article  CAS  PubMed  Google Scholar 

  262. Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA anbormalities. Ann Neurol. 2001;49(3):377–83.

    Article  CAS  PubMed  Google Scholar 

  263. Ostergaard E, Hansen FJ, Sorensen N, et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain. 2007;130(Pt 3):853–61.

    Article  PubMed  Google Scholar 

  264. Freisinger P, Futterer N, Lankes E, et al. Hepatocerebral mitochondrial DNA depletion syndrome caused by deoxyguanosine kinase (DGUOK) mutations. Arch Neurol. 2006;63(8):1129–34.

    Article  PubMed  Google Scholar 

  265. El-Hattab AW, Scaglia F, Craigen WJ, Wong LJC. MPV17-related hepatocerebral mitochondrial DNA depletion syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  266. Ostergaard E. SUCLA2-related mitochondrial DNA depletion syndrome, Encephalomyopathic form, with mild methylmalonic aciduria. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  267. Cohen BH, Chinnery PF, Copeland WC. POLG-Related Disorders. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  268. Fadic R, Russell JA, Vedanarayanan VV, Lehar M, Kuncl RW, Johns DR. Sensory ataxic neuropathy as the presenting feature of a novel mitochondrial disease. Neurology. 1997;49(1):239–45.

    Article  CAS  PubMed  Google Scholar 

  269. Karadimas CL, Vu TH, Holve SA, et al. Navajo neurohepatopathy is caused by a mutation in the MPV17 gene. Am J Hum Genet. 2006;79(3):544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. El-Hattab AW, Li FY, Schmitt E, Zhang S, Craigen WJ, Wong LJ. MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: new patients and novel mutations. Mol Genet Metab. 2010;99(3):300–8.

    Article  CAS  PubMed  Google Scholar 

  271. Fratter C, Raman P, Alston CL, et al. RRM2B mutations are frequent in familial PEO with multiple mtDNA deletions. Neurology. 2011;76(23):2032–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Tyynismaa H, Sun R, Ahola-Erkkila S, et al. Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. Hum Mol Genet. 2012;21(1):66–75.

    Article  PubMed  CAS  Google Scholar 

  273. de Vries MC, Rodenburg RJ, Morava E, et al. Normal biochemical analysis of the oxidative phosphorylation (OXPHOS) system in a child with POLG mutations: a cautionary note. J Inherit Metab Dis. 2008;31 Suppl 2:S299–302.

    Article  PubMed  Google Scholar 

  274. Baertling F, Rodenburg RJ, Schaper J, et al. A guide to diagnosis and treatment of Leigh syndrome. J Neurol Neurosurg Psychiatry. 2014;85(3):257–65.

    Article  PubMed  Google Scholar 

  275. Rahman S, Blok RB, Dahl HH, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996;39(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  276. Hommes FA, Polman HA, Reerink JD. Leigh’s encephalomyelopathy: an inborn error of gluconeogenesis. Arch Dis Child. 1968;43(230):423–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Willems JL, Monnens LA, Trijbels JM, et al. Leigh’s encephalomyelopathy in a patient with cytochrome c oxidase deficiency in muscle tissue. Pediatrics. 1977;60(6):850–7.

    CAS  PubMed  Google Scholar 

  278. DeVivo DC, Haymond MW, Obert KA, Nelson JS, Pagliara AS. Defective activation of the pyruvate dehydrogenase complex in subacute necrotizing encephalomyelopathy (Leigh disease). Ann Neurol. 1979;6(6):483–94.

    Article  CAS  PubMed  Google Scholar 

  279. Sofou K, De Coo IF, Isohanni P, et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J Rare Dis. 2014;9:52.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Han J, Lee YM, Kim SM, Han SY, Lee JB, Han SH. Ophthalmological manifestations in patients with Leigh syndrome. Br J Ophthalmol. 2015;99(4):528–35.

    Article  PubMed  Google Scholar 

  281. Taylor MJ, Robinson BH. Evoked potentials in children with oxidative metabolic defects leading to Leigh syndrome. Pediatr Neurol. 1992;8(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  282. Rodenburg RJ. Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis. 2011;34(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  283. Di Rocco M, Lamba LD, Minniti G, Caruso U, Naito E. Outcome of thiamine treatment in a child with Leigh disease due to thiamine-responsive pyruvate dehydrogenase deficiency. Eur J Paediatr Neurol. 2000;4(3):115–7.

    Article  PubMed  Google Scholar 

  284. DiMauro S, Hirano M. Merrf. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews(R). Seattle: University of Washington; 1993.

    Google Scholar 

  285. Schaefer AM, McFarland R, Blakely EL, et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol. 2008;63(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  286. Fukuhara N. Clinicopathological features of MERRF. Muscle Nerve Suppl. 1995;3:S90–4.

    Article  CAS  PubMed  Google Scholar 

  287. Gronlund MA, Honarvar AK, Andersson S, et al. Ophthalmological findings in children and young adults with genetically verified mitochondrial disease. Br J Ophthalmol. 2010;94(1):121–7.

    Article  CAS  PubMed  Google Scholar 

  288. Isashiki Y, Nakagawa M, Ohba N, et al. Retinal manifestations in mitochondrial diseases associated with mitochondrial DNA mutation. Acta Ophthalmol Scand. 1998;76(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  289. Reichmann H, Vogler L, Seibel P. Ragged red or ragged blue fibers. Eur Neurol. 1996;36(2):98–102.

    Article  CAS  PubMed  Google Scholar 

  290. Mancuso M, Petrozzi L, Filosto M, et al. MERRF syndrome without ragged-red fibers: the need for molecular diagnosis. Biochem Biophys Res Commun. 2007;354(4):1058–60.

    Article  CAS  PubMed  Google Scholar 

  291. Setoguchi T, Salen G, Tint GS, Mosbach EH. A biochemical abnormality in cerebrotendinous xanthomatosis. Impairment of bile acid biosynthesis associated with incomplete degradation of the cholesterol side chain. J Clin Invest. 1974;53(5):1393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Lorincz MT, Rainier S, Thomas D, Fink JK. Cerebrotendinous xanthomatosis: possible higher prevalence than previously recognized. Arch Neurol. 2005;62(9):1459–63.

    Article  PubMed  Google Scholar 

  293. Clayton PT, Verrips A, Sistermans E, Mann A, Mieli-Vergani G, Wevers R. Mutations in the sterol 27-hydroxylase gene (CYP27A) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2002;25(6):501–13.

    Article  CAS  PubMed  Google Scholar 

  294. Cenedella RJ. Cholesterol and cataracts. Surv Ophthalmol. 1996;40(4):320–37.

    Article  CAS  PubMed  Google Scholar 

  295. Berginer VM, Shany S, Alkalay D, et al. Osteoporosis and increased bone fractures in cerebrotendinous xanthomatosis. Metabolism. 1993;42(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  296. Dotti MT, Rufa A, Federico A. Cerebrotendinous xanthomatosis: heterogeneity of clinical phenotype with evidence of previously undescribed ophthalmological findings. J Inherit Metab Dis. 2001;24(7):696–706.

    Article  CAS  PubMed  Google Scholar 

  297. Cruysberg JR, Wevers RA, van Engelen BG, Pinckers A, van Spreeken A, Tolboom JJ. Ocular and systemic manifestations of cerebrotendinous xanthomatosis. Am J Ophthalmol. 1995;120(5):597–604.

    Article  CAS  PubMed  Google Scholar 

  298. Koopman BJ, Wolthers BG, van der Molen JC, Waterreus RJ. Bile acid therapies applied to patients suffering from cerebrotendinous xanthomatosis. Clin Chim Acta. 1985;152(1–2):115–22.

    Article  CAS  PubMed  Google Scholar 

  299. Tint GS, Irons M, Elias ER, et al. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N Engl J Med. 1994;330(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  300. Kelley RI. RSH/Smith-Lemli-Opitz syndrome: mutations and metabolic morphogenesis. Am J Hum Genet. 1998;63(2):322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Wassif CA, Maslen C, Kachilele-Linjewile S, et al. Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet. 1998;63(1):55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Smith DW, Lemli L, Opitz JM. A newly recognized syndrome of multiple congenital anomalies. J Pediatr. 1964;64:210–7.

    Article  CAS  PubMed  Google Scholar 

  303. Natowicz MR, Evans JE. Abnormal bile acids in the Smith-Lemli-Opitz syndrome. Am J Med Genet. 1994;50(4):364–7.

    Article  CAS  PubMed  Google Scholar 

  304. Nowaczyk MJ, McCaughey D, Whelan DT, Porter FD. Incidence of Smith-Lemli-Opitz syndrome in Ontario, Canada. Am J Med Genet. 2001;102(1):18–20.

    Article  CAS  PubMed  Google Scholar 

  305. Nowaczyk MJ, Whelan DT, Hill RE. Smith-Lemli-Opitz syndrome: phenotypic extreme with minimal clinical findings. Am J Med Genet. 1998;78(5):419–23.

    Article  CAS  PubMed  Google Scholar 

  306. Anderson AJ, Stephan MJ, Walker WO, Kelley RI. Variant RSH/Smith-Lemli-Opitz syndrome with atypical sterol metabolism. Am J Med Genet. 1998;78(5):413–8.

    Article  CAS  PubMed  Google Scholar 

  307. Kelley RI, Hennekam RC. The Smith-Lemli-Opitz syndrome. J Med Genet. 2000;37(5):321–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Atchaneeyasakul LO, Linck LM, Connor WE, Weleber RG, Steiner RD. Eye findings in 8 children and a spontaneously aborted fetus with RSH/Smith-Lemli-Opitz syndrome. Am J Med Genet. 1998;80(5):501–5.

    Article  CAS  PubMed  Google Scholar 

  309. Pauli RM, Williams MS, Josephson KD, Tint GS. Smith-Lemli-Opitz syndrome: thirty-year follow-up of “S” of “RSH” syndrome. Am J Med Genet. 1997;68(3):260–2.

    Article  CAS  PubMed  Google Scholar 

  310. Jira PE, Wevers RA, de Jong J, et al. Simvastatin. A new therapeutic approach for Smith-Lemli-Opitz syndrome. J Lipid Res. 2000;41(8):1339–46.

    CAS  PubMed  Google Scholar 

  311. Gibson KM, Hoffmann GF, Tanaka RD, Bishop RW, Chambliss KL. Mevalonate kinase map position 12q24. Chromosome Res. 1997;5(2):150.

    Article  CAS  PubMed  Google Scholar 

  312. Haas D, Hoffmann GF. Mevalonate kinase deficiencies: from mevalonic aciduria to hyperimmunoglobulinemia D syndrome. Orphanet J Rare Dis. 2006;1:13.

    Article  PubMed  PubMed Central  Google Scholar 

  313. Hoffmann GF, Charpentier C, Mayatepek E, et al. Clinical and biochemical phenotype in 11 patients with mevalonic aciduria. Pediatrics. 1993;91(5):915–21.

    CAS  PubMed  Google Scholar 

  314. Mandey SH, Schneiders MS, Koster J, Waterham HR. Mutational spectrum and genotype-phenotype correlations in mevalonate kinase deficiency. Hum Mutat. 2006;27(8):796–802.

    Article  CAS  PubMed  Google Scholar 

  315. Hinson DD, Rogers ZR, Hoffmann GF, et al. Hematological abnormalities and cholestatic liver disease in two patients with mevalonate kinase deficiency. Am J Med Genet. 1998;78(5):408–12.

    Article  CAS  PubMed  Google Scholar 

  316. Wilker SC, Dagnelie G, Goldberg MF. Retinitis pigmentosa and punctate cataracts in mevalonic aciduria. Retin Cases Brief Rep. 2010;4(1):34–6.

    Article  PubMed  Google Scholar 

  317. Simon A, Kremer HP, Wevers RA, et al. Mevalonate kinase deficiency: evidence for a phenotypic continuum. Neurology. 2004;62(6):994–7.

    Article  CAS  PubMed  Google Scholar 

  318. Roosing S, Collin RW, den Hollander AI, Cremers FP, Siemiatkowska AM. Prenylation defects in inherited retinal diseases. J Med Genet. 2014;51(3):143–51.

    Article  CAS  PubMed  Google Scholar 

  319. Goldstein JL, Brown MS. Molecular medicine. The cholesterol quartet. Science. 2001;292(5520):1310–2.

    Article  CAS  PubMed  Google Scholar 

  320. Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974;249(16):5153–62.

    CAS  PubMed  Google Scholar 

  321. Khachadurian AK. The inheritance of essential familial hypercholesterolemia. Am J Med. 1964;37:402–7.

    Article  CAS  PubMed  Google Scholar 

  322. Nordestgaard BG, Chapman MJ, Humphries SE, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478–90a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ. 1991;303(6807):893–896.

    Google Scholar 

  324. Gaynor PM, Zhang WY, Salehizadeh B, Pettiford B, Kruth HS. Cholesterol accumulation in human cornea: evidence that extracellular cholesteryl ester-rich lipid particles deposit independently of foam cells. J Lipid Res. 1996;37(9):1849–61.

    CAS  PubMed  Google Scholar 

  325. Hickey N, Maurer B, Mulcahy R. Arcus senilis: its relation to certain attributes and risk factors in patients with coronary heart disease. Br Heart J. 1970;32(4):449–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Zech Jr LA, Hoeg JM. Correlating corneal arcus with atherosclerosis in familial hypercholesterolemia. Lipids Health Dis. 2008;7:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22(4):352–5.

    Article  CAS  PubMed  Google Scholar 

  328. Puntoni M, Sbrana F, Bigazzi F, Sampietro T. Tangier disease: epidemiology, pathophysiology, and management. Am J Cardiovasc Drugs. 2012;12(5):303–11.

    Article  CAS  PubMed  Google Scholar 

  329. Fazio R, Nemni R, Quattrini A, et al. Acute presentation of Tangier polyneuropathy: a clinical and morphological study. Acta Neuropathol. 1993;86(1):90–4.

    Article  CAS  PubMed  Google Scholar 

  330. Pervaiz MA, Gau G, Jaffe AS, Saenger AK, Baudhuin L, Ellison J. A non-classical presentation of Tangier disease with three ABCA1 mutations. JIMD Rep. 2012;4:109–11.

    Article  PubMed  Google Scholar 

  331. Pressly TA, Scott WJ, Ide CH, Winkler A, Reams GP. Ocular complications of Tangier disease. Am J Med. 1987;83(5):991–4.

    Article  CAS  PubMed  Google Scholar 

  332. Winder AF, Alexander R, Garner A, et al. The pathology of cornea in Tangier disease (familial high density lipoprotein deficiency). J Clin Pathol. 1996;49(5):407–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Herrmann WA, von Mohrenfels CW, Lohmann CP. Confocal microscopy and corneal sensitivity in a patient with corneal manifestations of Tangier disease. Cornea. 2004;23(8):825–7.

    Article  PubMed  Google Scholar 

  334. Serfaty-Lacrosniere C, Civeira F, Lanzberg A, et al. Homozygous Tangier disease and cardiovascular disease. Atherosclerosis. 1994;107(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  335. Norum KR, Gjone E. Familial serum-cholesterol esterification failure. A new inborn error of metabolism. Biochim Biophys Acta. 1967;144(3):698–700.

    Article  CAS  PubMed  Google Scholar 

  336. Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res. 2012;53(9):1783–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Barchiesi BJ, Eckel RH, Ellis PP. The cornea and disorders of lipid metabolism. Surv Ophthalmol. 1991;36(1):1–22.

    Article  CAS  PubMed  Google Scholar 

  338. Viestenz A, Schlotzer-Schrehardt U, Hofmann-Rummelt C, Seitz B, Kuchle M. Histopathology of corneal changes in lecithin-cholesterol acyltransferase deficiency. Cornea. 2002;21(8):834–7.

    Article  PubMed  Google Scholar 

  339. Cogan DG, Kruth HS, Datilis MB, Martin N. Corneal opacity in LCAT disease. Cornea. 1992;11(6):595–9.

    Article  CAS  PubMed  Google Scholar 

  340. Saeedi R, Li M, Frohlich J. A review on lecithin:cholesterol acyltransferase deficiency. Clin Biochem. 2014;48(7–8):472–5.

    PubMed  Google Scholar 

  341. Bassen FA, Kornzweig AL. Malformation of the erythrocytes in a case of atypical retinitis pigmentosa. Blood. 1950;5(4):381–7.

    CAS  PubMed  Google Scholar 

  342. Glickman RM, Green PH, Lees RS, Lux SE, Kilgore A. Immunofluorescence studies of apolipoprotein B in intestinal mucosa. Absence in abetalipoproteinemia. Gastroenterology. 1979;76(2):288–92.

    CAS  PubMed  Google Scholar 

  343. Talmud PJ, Lloyd JK, Muller DP, Collins DR, Scott J, Humphries S. Genetic evidence from two families that the apolipoprotein B gene is not involved in abetalipoproteinemia. J Clin Invest. 1988;82(5):1803–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Shoulders CC, Brett DJ, Bayliss JD, et al. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Genet. 1993;2(12):2109–16.

    Article  CAS  PubMed  Google Scholar 

  345. Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis. 2014;37(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  346. Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol. 2014;25(3):161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Yee RD, Cogan DG, Zee DS. Ophthalmoplegia and dissociated nystagmus in adetalipoproteinemia. Arch Ophthalmol. 1976;94(4):571–5.

    Article  CAS  PubMed  Google Scholar 

  348. Gorin MB, Paul TO, Rader DJ. Angioid streaks associated with abetalipoproteinemia. Ophthalmic Genet. 1994;15(3–4):151–9.

    Article  CAS  PubMed  Google Scholar 

  349. Black JT. Neuromuscular diseases that affect the eye. Int Ophthalmol Clin. 1978;18(1):83–121.

    CAS  PubMed  Google Scholar 

  350. Chowers I, Banin E, Merin S, Cooper M, Granot E. Long-term assessment of combined vitamin A and E treatment for the prevention of retinal degeneration in abetalipoproteinaemia and hypobetalipoproteinaemia patients. Eye (Lond). 2001;15(Pt 4):525–30.

    Article  CAS  Google Scholar 

  351. Cogan DG, Rodrigues M, Chu FC, Schaefer EJ. Ocular abnormalities in abetalipoproteinemia. A clinicopathologic correlation. Ophthalmology. 1984;91(8):991–8.

    Article  CAS  PubMed  Google Scholar 

  352. Muller DP, Lloyd JK. Effect of large oral doses of vitamin E on the neurological sequelae of patients with abetalipoproteinemia. Ann N Y Acad Sci. 1982;393:133–44.

    Article  CAS  PubMed  Google Scholar 

  353. Sjogren T, Larsson T. Oligophrenia in combination with congenital ichthyosis and spastic disorders; a clinical and genetic study. Acta Psychiatr Neurol Scand Suppl. 1957;113:1–112.

    CAS  PubMed  Google Scholar 

  354. De Laurenzi V, Rogers GR, Hamrock DJ, et al. Sjogren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat Genet. 1996;12(1):52–7.

    Article  PubMed  Google Scholar 

  355. Aldahmesh MA, Mohamed JY, Alkuraya HS, et al. Recessive mutations in ELOVL4 cause ichthyosis, intellectual disability, and spastic quadriplegia. Am J Hum Genet. 2011;89(6):745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Sjogren T. Oligophrenia combined with congenital ichthyosiform erythrodermia, spastic syndrome and macularretinal degeneration; a clinical and genetic study. Acta Genet Stat Med. 1956;6(1 Part 2):80–91.

    CAS  PubMed  Google Scholar 

  357. Rizzo WB, Dammann AL, Craft DA. Sjogren-Larsson syndrome. Impaired fatty alcohol oxidation in cultured fibroblasts due to deficient fatty alcohol:nicotinamide adenine dinucleotide oxidoreductase activity. J Clin Invest. 1988;81(3):738–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Jagell S, Gustavson KH, Holmgren G. Sjogren-Larsson syndrome in Sweden. A clinical, genetic and epidemiological study. Clin Genet. 1981;19(4):233–56.

    Article  CAS  PubMed  Google Scholar 

  359. Willemsen MA, IJlst L, Steijlen PM, et al. Clinical, biochemical and molecular genetic characteristics of 19 patients with the Sjogren-Larsson syndrome. Brain. 2001;124(Pt 7):1426–37.

    Article  CAS  PubMed  Google Scholar 

  360. Jagell S, Polland W, Sandgren O. Specific changes in the fundus typical for the Sjogren-Larsson syndrome. An ophthalmological study of 35 patients. Acta Ophthalmol (Copenh). 1980;58(3):321–30.

    Article  CAS  Google Scholar 

  361. Willemsen MA, Cruysberg JR, Rotteveel JJ, Aandekerk AL, Van Domburg PH, Deutman AF. Juvenile macular dystrophy associated with deficient activity of fatty aldehyde dehydrogenase in Sjogren-Larsson syndrome. Am J Ophthalmol. 2000;130(6):782–9.

    Article  CAS  PubMed  Google Scholar 

  362. Bhallil S, Chraibi F, Andalloussi IB, Tahri H. Optical coherence tomography aspect of crystalline macular dystrophy in Sjogren-Larsson syndrome. Int Ophthalmol. 2012;32(5):495–8.

    Article  PubMed  Google Scholar 

  363. Fuijkschot J, Cruysberg JR, Willemsen MA, Keunen JE, Theelen T. Subclinical changes in the juvenile crystalline macular dystrophy in Sjogren-Larsson syndrome detected by optical coherence tomography. Ophthalmology. 2008;115(5):870–5.

    Article  PubMed  Google Scholar 

  364. Sanabria MR, Coco RM. Sjogren-larsson syndrome. Ophthalmology. 2011;118(10):2101–2.

    Article  PubMed  Google Scholar 

  365. van der Veen RL, Fuijkschot J, Willemsen MA, Cruysberg JR, Berendschot TT, Theelen T. Patients with Sjogren-Larsson syndrome lack macular pigment. Ophthalmology. 2010;117(5):966–71.

    Article  PubMed  Google Scholar 

  366. Sharma P, Chaudhuri Z, Raina UK, Ghosh B, Sethi S. Abnormal ocular electrophysiology in Sjogren-Larsson syndrome. J Pediatr Ophthalmol Strabismus. 2009;46(1):42–4.

    Article  PubMed  Google Scholar 

  367. Willemsen MA, Rotteveel JJ, Steijlen PM, Heerschap A, Mayatepek E. 5-Lipoxygenase inhibition: a new treatment strategy for Sjogren-Larsson syndrome. Neuropediatrics. 2000;31(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  368. Lefevre C, Jobard F, Caux F, et al. Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am J Hum Genet. 2001;69(5):1002–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Lass A, Zimmermann R, Haemmerle G, et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 2006;3(5):309–19.

    Article  CAS  PubMed  Google Scholar 

  370. Chanarin I, Patel A, Slavin G, Wills EJ, Andrews TM, Stewart G. Neutral-lipid storage disease: a new disorder of lipid metabolism. Br Med J. 1975;1(5957):553–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Dorfman ML, Hershko C, Eisenberg S, Sagher F. Ichthyosiform dermatosis with systemic lipidosis. Arch Dermatol. 1974;110(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  372. Pena-Penabad C, Almagro M, Martinez W, et al. Dorfman—Chanarin syndrome (neutral lipid storage disease): new clinical features. Br J Dermatol. 2001;144(2):430–2.

    Article  CAS  PubMed  Google Scholar 

  373. Williams ML, Koch TK, O’Donnell JJ, et al. Ichthyosis and neutral lipid storage disease. Am J Med Genet. 1985;20(4):711–26.

    Article  CAS  PubMed  Google Scholar 

  374. Arslansoyu Camlar S, Gencpinar P, Makay B, et al. Chanarin-dorfman syndrome with multi-system involvement in two siblings. Turk J Haematol. 2013;30(1):72–5.

    Article  PubMed  PubMed Central  Google Scholar 

  375. Jordans GH. The familial occurrence of fat containing vacuoles in the leukocytes diagnosed in two brothers suffering from dystrophia musculorum progressiva (ERB.). Acta Med Scand. 1953;145(6):419–23.

    Article  CAS  PubMed  Google Scholar 

  376. Kakourou T, Drogari E, Christomanou H, Giannoulia A, Dacou-Voutetakis C. Neutral lipid storage disease—response to dietary intervention. Arch Dis Child. 1997;77(2):184.

    Article  CAS  PubMed  Google Scholar 

  377. Wolfe LA, Krasnewich D. Congenital disorders of glycosylation and intellectual disability. Dev Disabil Res Rev. 2013;17(3):211–25.

    Article  PubMed  Google Scholar 

  378. Jaeken J. Congenital disorders of glycosylation (CDG): it’s (nearly) all in it! J Inherit Metab Dis. 2011;34(4):853–8.

    Article  CAS  PubMed  Google Scholar 

  379. Aebi M, Helenius A, Schenk B, et al. Carbohydrate-deficient glycoprotein syndromes become congenital disorders of glycosylation: an updated nomenclature for CDG. First International Workshop on CDGS. Glycoconj J. 1999;16(11):669–71.

    Article  CAS  PubMed  Google Scholar 

  380. Freeze HH. Genetic defects in the human glycome. Nat Rev Genet. 2006;7(7):537–51.

    Article  CAS  PubMed  Google Scholar 

  381. Jaeken J, Matthijs G. Congenital disorders of glycosylation. Annu Rev Genomics Hum Genet. 2001;2:129–51.

    Article  CAS  PubMed  Google Scholar 

  382. Goreta SS, Dabelic S, Dumic J. Insights into complexity of congenital disorders of glycosylation. Biochem Med (Zagreb). 2012;22(2):156–70.

    Article  CAS  Google Scholar 

  383. Haeuptle MA, Hennet T. Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Hum Mutat. 2009;30(12):1628–41.

    Article  CAS  PubMed  Google Scholar 

  384. de Lonlay P, Seta N, Barrot S, et al. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases. J Med Genet. 2001;38(1):14–9.

    Article  PubMed  PubMed Central  Google Scholar 

  385. Andreasson S, Blennow G, Ehinger B, Stromland K. Full-field electroretinograms in patients with the carbohydrate-deficient glycoprotein syndrome. Am J Ophthalmol. 1991;112(1):83–6.

    Article  CAS  PubMed  Google Scholar 

  386. Jensen H, Kjaergaard S, Klie F, Moller HU. Ophthalmic manifestations of congenital disorder of glycosylation type 1a. Ophthalmic Genet. 2003;24(2):81–8.

    Article  PubMed  Google Scholar 

  387. Morava E, Wosik HN, Sykut-Cegielska J, et al. Ophthalmological abnormalities in children with congenital disorders of glycosylation type I. Br J Ophthalmol. 2009;93(3):350–4.

    Article  CAS  PubMed  Google Scholar 

  388. Stromme P, Maehlen J, Strom EH, Torvik A. The carbohydrate deficient glycoprotein syndrome. Tidsskr Nor Laegeforen. 1991;111(10):1236–7.

    CAS  PubMed  Google Scholar 

  389. Messenger WB, Yang P, Pennesi ME. Ophthalmic findings in an infant with phosphomannomutase deficiency. Doc Ophthalmol. 2014;128(2):149–53.

    Article  PubMed  PubMed Central  Google Scholar 

  390. Vodopiutz J, Bodamer OA. Congenital disorders of glycosylation—a challenging group of IEMs. J Inherit Metab Dis. 2008;31(2):267–9.

    Article  CAS  PubMed  Google Scholar 

  391. Warburg M. Hydrocephaly, congenital retinal nonattachment, and congenital falciform fold. Am J Ophthalmol. 1978;85(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  392. Williams RS, Swisher CN, Jennings M, Ambler M, Caviness Jr VS. Cerebro-ocular dysgenesis (Walker-Warburg syndrome): neuropathologic and etiologic analysis. Neurology. 1984;34(12):1531–41.

    Article  CAS  PubMed  Google Scholar 

  393. Santavuori P, Somer H, Sainio K, et al. Muscle-eye-brain disease (MEB). Brain Dev. 1989;11(3):147–53.

    Article  CAS  PubMed  Google Scholar 

  394. Cormand B, Pihko H, Bayes M, et al. Clinical and genetic distinction between Walker-Warburg syndrome and muscle-eye-brain disease. Neurology. 2001;56(8):1059–69.

    Article  CAS  PubMed  Google Scholar 

  395. Nabi NU, Mezer E, Blaser SI, Levin AA, Buncic JR. Ocular findings in lissencephaly. J AAPOS. 2003;7(3):178–84.

    Article  PubMed  Google Scholar 

  396. Zervos A, Hunt KE, Tong HQ, et al. Clinical, genetic and histopathologic findings in two siblings with muscle-eye-brain disease. Eur J Ophthalmol. 2002;12(4):253–61.

    CAS  PubMed  Google Scholar 

  397. Chitayat D, Toi A, Babul R, et al. Prenatal diagnosis of retinal nonattachment in the Walker-Warburg syndrome. Am J Med Genet. 1995;56(4):351–8.

    Article  CAS  PubMed  Google Scholar 

  398. Kaback M, Lim-Steele J, Dabholkar D, Brown D, Levy N, Zeiger K. Tay-Sachs disease—carrier screening, prenatal diagnosis, and the molecular era. An international perspective, 1970 to 1993. The International TSD Data Collection Network. JAMA. 1993;270(19):2307–15.

    Article  CAS  PubMed  Google Scholar 

  399. Johnson WG. The clinical spectrum of hexosaminidase deficiency diseases. Neurology. 1981;31(11):1453–6.

    Article  CAS  PubMed  Google Scholar 

  400. Navon R. Molecular and clinical heterogeneity of adult GM2 gangliosidosis. Dev Neurosci. 1991;13(4–5):295–8.

    Article  CAS  PubMed  Google Scholar 

  401. Rapin I, Suzuki K, Valsamis MP. Adult (chronic) GM2 gangliosidosis. Atypical spinocerebellar degeneration in a Jewish sibship. Arch Neurol. 1976;33(2):120–30.

    Article  CAS  PubMed  Google Scholar 

  402. Brett EM, Ellis RB, Haas L, et al. Late onset GM2-gangliosidosis. Clinical, pathological, and biochemical studies on 8 patients. Arch Dis Child. 1973;48(10):775–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Oonk JG, van der Helm HJ, Martin JJ. Spinocerebellar degeneration: hexosaminidase A and B deficiency in two adult sisters. Neurology. 1979;29(3):380–4.

    Article  CAS  PubMed  Google Scholar 

  404. Johnson WG, Chutorian A, Miranda A. A new juvenile hexosaminidase deficiency disease presenting as cerebellar ataxia. Clinical and biochemical studies. Neurology. 1977;27(11):1012–8.

    Article  CAS  PubMed  Google Scholar 

  405. Neudorfer O, Pastores GM, Zeng BJ, Gianutsos J, Zaroff CM, Kolodny EH. Late-onset Tay-Sachs disease: phenotypic characterization and genotypic correlations in 21 affected patients. Genet Med. 2005;7(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  406. Navon R, Argov Z, Frisch A. Hexosaminidase A deficiency in adults. Am J Med Genet. 1986;24(1):179–96.

    Article  CAS  PubMed  Google Scholar 

  407. Zammarchi E, Donati MA, Morrone A, Donzelli GP, Zhou XY, d’Azzo A. Early-infantile galactosialidosis: clinical, biochemical, and molecular observations in a new patient. Am J Med Genet. 1996;64(3):453–8.

    Article  CAS  PubMed  Google Scholar 

  408. Sewell AC, Pontz BF, Weitzel D, Humburg C. Clinical heterogeneity in infantile galactosialidosis. Eur J Pediatr. 1987;146(5):528–31.

    Article  CAS  PubMed  Google Scholar 

  409. O’Brien JS, Ho MW, Veath ML, et al. Juvenile GM 1 gangliosidosis: clinical, pathological, chemical and enzymatic studies. Clin Genet. 1972;3(6):411–34.

    Article  PubMed  Google Scholar 

  410. Wenger DA, Tarby TJ, Wharton C. Macular cherry-red spots and myoclonus with dementia: coexistent neuraminidase and beta-galactosidase deficiencies. Biochem Biophys Res Commun. 1978;82(2):589–95.

    Article  CAS  PubMed  Google Scholar 

  411. Goldberg MF, Cotlier E, Fichenscher LG, Kenyon K, Enat R, Borowsky SA. Macular cherry-red spot, corneal clouding, and beta-galactosidase deficiency. Clinical, biochemical, and electron microscopic study of a new autosomal recessive storage disease. Arch Intern Med. 1971;128(3):387–98.

    Article  CAS  PubMed  Google Scholar 

  412. Suzuki Y, Nakamura N, Fukuoka K. GM1-gangliosidosis: accumulation of ganglioside GM1 in cultured skin fibroblasts and correlation with clinical types. Hum Genet. 1978;43(2):127–31.

    Article  CAS  PubMed  Google Scholar 

  413. Brunetti-Pierri N, Scaglia F. GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab. 2008;94(4):391–6.

    Article  CAS  PubMed  Google Scholar 

  414. Okada S, O’Brien JS. Generalized gangliosidosis: beta-galactosidase deficiency. Science. 1968;160(3831):1002–4.

    Article  CAS  PubMed  Google Scholar 

  415. Suzuki Y, Nakamura N, Fukuoka K, Shimada Y, Uono M. beta-Galactosidase deficiency in juvenile and adult patients. Report of six Japanese cases and review of literature. Hum Genet. 1977;36(2):219–29.

    Article  CAS  PubMed  Google Scholar 

  416. Takamoto K, Beppu H, Hirose K, Uono M. Juvenile beta-galactosidase deficiency—a case with mental deterioration, dystonic movement, pyramidal symptoms, dysostosis and cherry red spot (author’s transl). Rinsho Shinkeigaku. 1980;20(5):339–45.

    CAS  PubMed  Google Scholar 

  417. Walton DS, Robb RM, Crocker AC. Ocular manifestations of group A Niemann-Pick disease. Am J Ophthalmol. 1978;85(2):174–80.

    Article  CAS  PubMed  Google Scholar 

  418. Honda Y, Sudo M. Electroretinogram and visually evoked cortical potential in Tay-Sachs disease: a report of two cases. J Pediatr Ophthalmol. 1976;13(4):226–9.

    CAS  PubMed  Google Scholar 

  419. Vanier MT. Niemann-Pick diseases. Handb Clin Neurol. 2013;113:1717–21.

    Article  PubMed  Google Scholar 

  420. Lowden JA, O’Brien JS. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet. 1979;31(1):1–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  421. Thomas PK, Abrams JD, Swallow D, Stewart G. Sialidosis type 1: cherry red spot-myoclonus syndrome with sialidase deficiency and altered electrophoretic mobilities of some enzymes known to be glycoproteins. 1. Clinical findings. J Neurol Neurosurg Psychiatry. 1979;42(10):873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Goldberg MF. Macular cherry-red spot and corneal haze in sialidosis (mucolipidosis type 1). Arch Ophthalmol. 2008;126(12):1778. author reply 1778.

    PubMed  Google Scholar 

  423. Gopaul KP, Crook MA. The inborn errors of sialic acid metabolism and their laboratory investigation. Clin Lab. 2006;52(3–4):155–69.

    CAS  PubMed  Google Scholar 

  424. Bateman JB, Philippart M, Isenberg SJ. Ocular features of multiple sulfatase deficiency and a new variant of metachromatic leukodystrophy. J Pediatr Ophthalmol Strabismus. 1984;21(4):133–9.

    CAS  PubMed  Google Scholar 

  425. von Figura K, Schmidt B, Selmer T, Dierks T. A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease. Bioessays. 1998;20(6):505–10.

    Article  Google Scholar 

  426. Burk RD, Valle D, Thomas GH, et al. Early manifestations of multiple sulfatase deficiency. J Pediatr. 1984;104(4):574–8.

    Article  CAS  PubMed  Google Scholar 

  427. Husain AM, Altuwaijri M, Aldosari M. Krabbe disease: neurophysiologic studies and MRI correlations. Neurology. 2004;63(4):617–20.

    Article  PubMed  Google Scholar 

  428. Korn-Lubetzki I, Dor-Wollman T, Soffer D, Raas-Rothschild A, Hurvitz H, Nevo Y. Early peripheral nervous system manifestations of infantile Krabbe disease. Pediatr Neurol. 2003;28(2):115–8.

    Article  PubMed  Google Scholar 

  429. Naidu S, Hofmann KJ, Moser HW, Maumenee IH, Wenger DA. Galactosylceramide-beta-galactosidase deficiency in association with cherry red spot. Neuropediatrics. 1988;19(1):46–8.

    Article  CAS  PubMed  Google Scholar 

  430. Hofman KJ, Naidu S, Moser HW, Maumenee IH, Wenger DA. Cherry red spot in association with galactosylceramide-beta-galactosidase deficiency. J Inherit Metab Dis. 1987;10(3):273–4.

    Article  CAS  PubMed  Google Scholar 

  431. Arbour LT, Silver K, Hechtman P, Treacy EP, Coulter-Mackie MB. Variable onset of metachromatic leukodystrophy in a Vietnamese family. Pediatr Neurol. 2000;23(2):173–6.

    Article  CAS  PubMed  Google Scholar 

  432. Barrell C. Juvenile metachromatic leukodystrophy: understanding the disease and implications for nursing care. J Pediatr Oncol Nurs. 2007;24(2):64–9.

    Article  PubMed  Google Scholar 

  433. Rucker JC, Shapiro BE, Han YH, et al. Neuro-ophthalmology of late-onset Tay-Sachs disease (LOTS). Neurology. 2004;63(10):1918–26.

    Article  CAS  PubMed  Google Scholar 

  434. Okada S, O’Brien JS. Tay-Sachs disease: generalized absence of a beta-D-N-acetylhexosaminidase component. Science. 1969;165(3894):698–700.

    Article  CAS  PubMed  Google Scholar 

  435. Brady RO, Kanfer JN, Mock MB, Fredrickson DS. The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proc Natl Acad Sci U S A. 1966;55(2):366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Schneider PB, Kennedy EP. Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease. J Lipid Res. 1967;8(3):202–9.

    CAS  PubMed  Google Scholar 

  437. Pentchev PG, Comly ME, Kruth HS, Patel S, Proestel M, Weintroub H. The cholesterol storage disorder of the mutant BALB/c mouse. A primary genetic lesion closely linked to defective esterification of exogenously derived cholesterol and its relationship to human type C Niemann-Pick disease. J Biol Chem. 1986;261(6):2772–7.

    CAS  PubMed  Google Scholar 

  438. Pentchev PG, Comly ME, Kruth HS, et al. A defect in cholesterol esterification in Niemann-Pick disease (type C) patients. Proc Natl Acad Sci U S A. 1985;82(23):8247–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Pentchev PG, Comly ME, Kruth HS, et al. Group C Niemann-Pick disease: faulty regulation of low-density lipoprotein uptake and cholesterol storage in cultured fibroblasts. FASEB J. 1987;1(1):40–5.

    CAS  PubMed  Google Scholar 

  440. Wenger DA, Barth G, Githens JH. Nine cases of sphingomyelin lipidosis, a new variant in Spanish-American Children. Juvenile variant of Niemann-Pick Disease with foamy and sea-blue histiocytes. Am J Dis Child. 1977;131(9):955–61.

    Article  CAS  PubMed  Google Scholar 

  441. Winsor EJ, Welch JP. Genetic and demographic aspects of Nova Scotia Niemann-Pick disease (type D). Am J Hum Genet. 1978;30(5):530–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  442. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010;5:16.

    Article  PubMed  PubMed Central  Google Scholar 

  443. Manning DJ, Price WI, Pearse RG. Fetal ascites: an unusual presentation of Niemann-Pick disease type C. Arch Dis Child. 1990;65(3):335–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  444. Rutledge JC. Progressive neonatal liver failure due to type C Niemann-Pick disease. Pediatr Pathol. 1989;9(6):779–84.

    Article  CAS  PubMed  Google Scholar 

  445. Guibaud P, Vanier MT, Malpuech G, et al. Early infantile, cholestatic, rapidly-fatal form of type C sphingomyelinosis. 2 cases. Pediatrie. 1979;34(2):103–14.

    CAS  PubMed  Google Scholar 

  446. Vanier MT, Wenger DA, Comly ME, Rousson R, Brady RO, Pentchev PG. Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin Genet. 1988;33(5):331–48.

    Article  CAS  PubMed  Google Scholar 

  447. Imrie J, Vijayaraghaven S, Whitehouse C, et al. Niemann-Pick disease type C in adults. J Inherit Metab Dis. 2002;25(6):491–500.

    Article  CAS  PubMed  Google Scholar 

  448. Josephs KA, Van Gerpen MW, Van Gerpen JA. Adult onset Niemann-Pick disease type C presenting with psychosis. J Neurol Neurosurg Psychiatry. 2003;74(4):528–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Solomon D, Winkelman AC, Zee DS, Gray L, Buttner-Ennever J. Niemann-Pick type C disease in two affected sisters: ocular motor recordings and brain-stem neuropathology. Ann N Y Acad Sci. 2005;1039:436–45.

    Article  PubMed  Google Scholar 

  450. Sevin M, Lesca G, Baumann N, et al. The adult form of Niemann-Pick disease type C. Brain. 2007;130(Pt 1):120–33.

    PubMed  Google Scholar 

  451. Rottach KG, von Maydell RD, Das VE, et al. Evidence for independent feedback control of horizontal and vertical saccades from Niemann-Pick type C disease. Vision Res. 1997;37(24):3627–38.

    Article  CAS  PubMed  Google Scholar 

  452. Leigh RJ, Rottach KG, Das VE. Transforming sensory perceptions into motor commands: evidence from programming of eye movements. Ann N Y Acad Sci. 1997;835:353–62.

    Article  CAS  PubMed  Google Scholar 

  453. McGovern MM, Wasserstein MP, Aron A, Desnick RJ, Schuchman EH, Brodie SE. Ocular manifestations of Niemann-Pick disease type B. Ophthalmology. 2004;111(7):1424–7.

    Article  PubMed  Google Scholar 

  454. Rudich DS, Curcio CA, Wasserstein M, Brodie SE. Inner macular hyperreflectivity demonstrated by optical coherence tomography in niemann-pick disease. JAMA Ophthalmol. 2013;131(9):1244–6.

    Article  PubMed  PubMed Central  Google Scholar 

  455. Porter FD, Scherrer DE, Lanier MH, et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010;2(56):56ra81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  456. Jiang X, Sidhu R, Porter FD, et al. A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma. J Lipid Res. 2011;52(7):1435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Patterson MC, Hendriksz CJ, Walterfang M, Sedel F, Vanier MT, Wijburg F. Recommendations for the diagnosis and management of Niemann-Pick disease type C: an update. Mol Genet Metab. 2012;106(3):330–44.

    Article  CAS  PubMed  Google Scholar 

  458. Hillborg PO. Gaucher’s disease in Norrbotten. Nord Med. 1959;61(8):303–6.

    CAS  PubMed  Google Scholar 

  459. Brady RO, Kanfer JN, Shapiro D. Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem Biophys Res Commun. 1965;18:221–5.

    Article  CAS  PubMed  Google Scholar 

  460. Short Communications. Biochem J. 1965;97(2):17C–24C.

    Google Scholar 

  461. Weinreb NJ, Brady RO, Tappel AL. The lysosomal localization of sphingolipid hydrolases. Biochim Biophys Acta. 1968;159(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  462. Devine EA, Smith M, Arredondo-Vega FX, Shafit-Zagardo B, Desnick RJ. Chromosomal localization of the gene for Gaucher disease. Prog Clin Biol Res. 1982;95:511–34.

    CAS  PubMed  Google Scholar 

  463. Barneveld RA, Keijzer W, Tegelaers FP, et al. Assignment of the gene coding for human beta-glucocerebrosidase to the region q21-q31 of chromosome 1 using monoclonal antibodies. Hum Genet. 1983;64(3):227–31.

    Article  CAS  PubMed  Google Scholar 

  464. Achord DT, Brot FE, Bell CE, Sly WS. Human beta-glucuronidase: in vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell. 1978;15(1):269–78.

    Article  CAS  PubMed  Google Scholar 

  465. Stahl PD, Rodman JS, Miller MJ, Schlesinger PH. Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A. 1978;75(3):1399–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Barton NW, Brady RO, Dambrosia JM, et al. Replacement therapy for inherited enzyme deficiency—macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med. 1991;324(21):1464–70.

    Article  CAS  PubMed  Google Scholar 

  467. Beutler E, Kay A, Saven A, et al. Enzyme replacement therapy for Gaucher disease. Blood. 1991;78(5):1183–9.

    CAS  PubMed  Google Scholar 

  468. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA. 1999;281(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  469. Poorthuis BJ, Wevers RA, Kleijer WJ, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet. 1999;105(1–2):151–6.

    Article  CAS  PubMed  Google Scholar 

  470. Wenstrup RJ, Roca-Espiau M, Weinreb NJ, Bembi B. Skeletal aspects of Gaucher disease: a review. Br J Radiol. 2002;75 Suppl 1:A2–12.

    Article  PubMed  Google Scholar 

  471. Cohen IJ. Bone crises in Gaucher disease. Isr Med Assoc J. 2003;5(11):838–9.

    PubMed  Google Scholar 

  472. Pastores GM, Barnett NL, Bathan P, Kolodny EH. A neurological symptom survey of patients with type I Gaucher disease. J Inherit Metab Dis. 2003;26(7):641–5.

    Article  CAS  PubMed  Google Scholar 

  473. Zimran A, Altarescu G, Rudensky B, Abrahamov A, Elstein D. Survey of hematological aspects of Gaucher disease. Hematology. 2005;10(2):151–6.

    Article  PubMed  Google Scholar 

  474. Goker-Alpan O, Schiffmann R, Park JK, Stubblefield BK, Tayebi N, Sidransky E. Phenotypic continuum in neuronopathic Gaucher disease: an intermediate phenotype between type 2 and type 3. J Pediatr. 2003;143(2):273–6.

    Article  PubMed  Google Scholar 

  475. Orvisky E, Park JK, LaMarca ME, et al. Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype. Mol Genet Metab. 2002;76(4):262–70.

    Article  CAS  PubMed  Google Scholar 

  476. Harris CM, Taylor DS, Vellodi A. Ocular motor abnormalities in Gaucher disease. Neuropediatrics. 1999;30(6):289–93.

    Article  CAS  PubMed  Google Scholar 

  477. Cogan DG, Chu FC, Gittinger J, Tychsen L. Fundal abnormalities of Gaucher’s disease. Arch Ophthalmol. 1980;98(12):2202–3.

    Article  CAS  PubMed  Google Scholar 

  478. Wang TJ, Chen MS, Shih YF, Hwu WL, Lai MY. Fundus abnormalities in a patient with type I Gaucher’s disease with 12-year follow-up. Am J Ophthalmol. 2005;139(2):359–62.

    Article  PubMed  Google Scholar 

  479. Rosenthal G, Wollstein G, Klemperer I, Yagev R, Lfshitz T. Macular changes in type I Gaucher’s disease. Ophthalmic Surg Lasers. 2000;31(4):331–3.

    CAS  PubMed  Google Scholar 

  480. Petrohelos M, Tricoulis D, Kotsiras I, Vouzoukos A. Ocular manifestations of Gaucher’s disease. Am J Ophthalmol. 1975;80(6):1006–10.

    Article  CAS  PubMed  Google Scholar 

  481. Damiano AM, Pastores GM, Ware Jr JE. The health-related quality of life of adults with Gaucher’s disease receiving enzyme replacement therapy: results from a retrospective study. Qual Life Res. 1998;7(5):373–86.

    Article  CAS  PubMed  Google Scholar 

  482. Weinreb N, Barranger J, Packman S, et al. Imiglucerase (Cerezyme) improves quality of life in patients with skeletal manifestations of Gaucher disease. Clin Genet. 2007;71(6):576–88.

    Article  CAS  PubMed  Google Scholar 

  483. Takahashi T, Yoshida Y, Sato W, et al. Enzyme therapy in Gaucher disease type 2: an autopsy case. Tohoku J Exp Med. 1998;186(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  484. Vellodi A, Bembi B, de Villemeur TB, et al. Management of neuronopathic Gaucher disease: a European consensus. J Inherit Metab Dis. 2001;24(3):319–27.

    Article  CAS  PubMed  Google Scholar 

  485. Cox T, Lachmann R, Hollak C, et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet. 2000;355(9214):1481–5.

    Article  CAS  PubMed  Google Scholar 

  486. Pastores GM, Elstein D, Hrebicek M, Zimran A. Effect of miglustat on bone disease in adults with type 1 Gaucher disease: a pooled analysis of three multinational, open-label studies. Clin Ther. 2007;29(8):1645–54.

    Article  CAS  PubMed  Google Scholar 

  487. Franceschetti AT. Cornea verticillata (Gruber) and its relation to Fabry’s disease (angiokeratoma corporis diffusum). Ophthalmologica. 1968;156(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  488. Pompen AW, Ruiter M, Wyers HJ. Angiokeratoma corporis diffusum (universale) Fabry, as a sign of an unknown internal disease; two autopsy reports. Acta Med Scand. 1947;128(3):234–55.

    Article  CAS  PubMed  Google Scholar 

  489. Sweeley CC, Klionsky B. Fabry’s disease: classification as a sphingolipidosis and partial characterization of a novel glycolipid. J Biol Chem. 1963;238:3148–50.

    CAS  PubMed  Google Scholar 

  490. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L. Enzymatic defect in Fabry’s disease. Ceramidetrihexosidase deficiency. N Engl J Med. 1967;276(21):1163–7.

    Article  CAS  PubMed  Google Scholar 

  491. Bishop DF, Calhoun DH, Bernstein HS, Hantzopoulos P, Quinn M, Desnick RJ. Human alpha-galactosidase A: nucleotide sequence of a cDNA clone encoding the mature enzyme. Proc Natl Acad Sci U S A. 1986;83(13):4859–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  492. Lidove O, Kaminsky P, Hachulla E, et al. Fabry disease ‘The New Great Imposter’: results of the French Observatoire in Internal Medicine Departments (FIMeD). Clin Genet. 2012;81(6):571–7.

    Article  CAS  PubMed  Google Scholar 

  493. Pieroni M, Chimenti C, De Cobelli F, et al. Fabry’s disease cardiomyopathy: echocardiographic detection of endomyocardial glycosphingolipid compartmentalization. J Am Coll Cardiol. 2006;47(8):1663–71.

    Article  PubMed  Google Scholar 

  494. Politei JM, Capizzano AA. Magnetic resonance image findings in 5 young patients with Fabry disease. Neurologist. 2006;12(2):103–5.

    Article  PubMed  Google Scholar 

  495. Hoffmann B, Schwarz M, Mehta A, Keshav S. Gastrointestinal symptoms in 342 patients with Fabry disease: prevalence and response to enzyme replacement therapy. Clin Gastroenterol Hepatol. 2007;5(12):1447–53.

    Article  PubMed  Google Scholar 

  496. Magage S, Lubanda JC, Susa Z, et al. Natural history of the respiratory involvement in Anderson-Fabry disease. J Inherit Metab Dis. 2007;30(5):790–9.

    Article  CAS  PubMed  Google Scholar 

  497. Hegemann S, Hajioff D, Conti G, et al. Hearing loss in Fabry disease: data from the Fabry Outcome Survey. Eur J Clin Invest. 2006;36(9):654–62.

    Article  CAS  PubMed  Google Scholar 

  498. Sachdev B, Takenaka T, Teraguchi H, et al. Prevalence of Anderson-Fabry disease in male patients with late onset hypertrophic cardiomyopathy. Circulation. 2002;105(12):1407–11.

    Article  CAS  PubMed  Google Scholar 

  499. Nakao S, Kodama C, Takenaka T, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int. 2003;64(3):801–7.

    Article  PubMed  Google Scholar 

  500. Nguyen TT, Gin T, Nicholls K, Low M, Galanos J, Crawford A. Ophthalmological manifestations of Fabry disease: a survey of patients at the Royal Melbourne Fabry Disease Treatment Centre. Clin Experiment Ophthalmol. 2005;33(2):164–8.

    Article  PubMed  Google Scholar 

  501. Sodi A, Ioannidis AS, Mehta A, Davey C, Beck M, Pitz S. Ocular manifestations of Fabry’s disease: data from the Fabry Outcome Survey. Br J Ophthalmol. 2007;91(2):210–4.

    Article  PubMed  Google Scholar 

  502. Allen LE, Cosgrave EM, Kersey JP, Ramaswami U. Fabry disease in children: correlation between ocular manifestations, genotype and systemic clinical severity. Br J Ophthalmol. 2010;94(12):1602–5.

    Article  CAS  PubMed  Google Scholar 

  503. Ries M, Mengel E, Kutschke G, et al. Use of gabapentin to reduce chronic neuropathic pain in Fabry disease. J Inherit Metab Dis. 2003;26(4):413–4.

    Article  CAS  PubMed  Google Scholar 

  504. Eng CM, Guffon N, Wilcox WR, et al. Safety and efficacy of recombinant human alpha-galactosidase A—replacement therapy in Fabry’s disease. N Engl J Med. 2001;345(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  505. Desnick RJ, Brady R, Barranger J, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med. 2003;138(4):338–46.

    Article  PubMed  Google Scholar 

  506. Eng CM, Germain DP, Banikazemi M, et al. Fabry disease: guidelines for the evaluation and management of multi-organ system involvement. Genet Med. 2006;8(9):539–48.

    Article  PubMed  Google Scholar 

  507. Danon MJ, Oh SJ, DiMauro S, et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology. 1981;31(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  508. Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406(6798):906–10.

    Article  CAS  PubMed  Google Scholar 

  509. Kamphoven JH, de Ruiter MM, Winkel LP, et al. Hearing loss in infantile Pompe’s disease and determination of underlying pathology in the knockout mouse. Neurobiol Dis. 2004;16(1):14–20.

    Article  PubMed  Google Scholar 

  510. van Capelle CI, Goedegebure A, Homans NC, Hoeve HL, Reuser AJ, van der Ploeg AT. Hearing loss in Pompe disease revisited: results from a study of 24 children. J Inherit Metab Dis. 2010;33(5):597–602.

    Article  PubMed  PubMed Central  Google Scholar 

  511. van den Hout HM, Hop W, van Diggelen OP, et al. The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics. 2003;112(2):332–40.

    Article  PubMed  Google Scholar 

  512. Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr. 2006;148(5):671–6.

    Article  PubMed  Google Scholar 

  513. Slonim AE, Bulone L, Ritz S, Goldberg T, Chen A, Martiniuk F. Identification of two subtypes of infantile acid maltase deficiency. J Pediatr. 2000;137(2):283–5.

    Article  CAS  PubMed  Google Scholar 

  514. Prakalapakorn SG, Proia AD, Yanovitch TL, et al. Ocular and histologic findings in a series of children with infantile pompe disease treated with enzyme replacement therapy. J Pediatr Ophthalmol Strabismus. 2014;51(6):355–62.

    Article  PubMed  PubMed Central  Google Scholar 

  515. Pena LD, Proia AD, Kishnani PS. Postmortem findings and clinical correlates in individuals with Infantile-Onset Pompe Disease. JIMD Rep. 2015;23:45–54.

    Article  PubMed  PubMed Central  Google Scholar 

  516. Pokorny KS, Ritch R, Friedman AH, Desnick RJ. Ultrastructure of the eye in fetal type II glycogenosis (Pompe’s disease). Invest Ophthalmol Vis Sci. 1982;22(1):25–31.

    CAS  PubMed  Google Scholar 

  517. Prall FR, Drack A, Taylor M, et al. Ophthalmic manifestations of Danon disease. Ophthalmology. 2006;113(6):1010–3.

    Article  PubMed  Google Scholar 

  518. Thiadens AA, Slingerland NW, Florijn RJ, Visser GH, Riemslag FC, Klaver CC. Cone-rod dystrophy can be a manifestation of Danon disease. Graefes Arch Clin Exp Ophthalmol. 2012;250(5):769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  519. An Y, Young SP, Hillman SL, Van Hove JL, Chen YT, Millington DS. Liquid chromatographic assay for a glucose tetrasaccharide, a putative biomarker for the diagnosis of Pompe disease. Anal Biochem. 2000;287(1):136–43.

    Article  CAS  PubMed  Google Scholar 

  520. Young SP, Piraud M, Goldstein JL, et al. Assessing disease severity in Pompe disease: the roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. Am J Med Genet C Semin Med Genet. 2012;160C(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  521. Winkel LP, Hagemans ML, van Doorn PA, et al. The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol. 2005;252(8):875–84.

    Article  PubMed  Google Scholar 

  522. Mink JW, Augustine EF, Adams HR, Marshall FJ, Kwon JM. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.

    Article  PubMed  PubMed Central  Google Scholar 

  523. Zeman W, Dyken P. Neuronal ceroid-lipofuscinosis (Batten’s disease): relationship to amaurotic family idiocy? Pediatrics. 1969;44(4):570–83.

    CAS  PubMed  Google Scholar 

  524. Santavuori P, Haltia M, Rapola J. Infantile type of so-called neuronal ceroid-lipofuscinosis. Dev Med Child Neurol. 1974;16(5):644–53.

    Article  CAS  PubMed  Google Scholar 

  525. Kohlschutter A, Gardiner RM, Goebel HH. Human forms of neuronal ceroid-lipofuscinosis (Batten disease): consensus on diagnostic criteria, Hamburg 1992. J Inherit Metab Dis. 1993;16(2):241–4.

    Article  CAS  PubMed  Google Scholar 

  526. Pampiglione G, Harden A. So-called neuronal ceroid lipofuscinosis. Neurophysiological studies in 60 children. J Neurol Neurosurg Psychiatry. 1977;40(4):323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  527. Santavuori P. Neuronal ceroid-lipofuscinoses in childhood. Brain Dev. 1988;10(2):80–3.

    Article  CAS  PubMed  Google Scholar 

  528. Birch DG. Retinal degeneration in retinitis pigmentosa and neuronal ceroid lipofuscinosis: an overview. Mol Genet Metab. 1999;66(4):356–66.

    Article  CAS  PubMed  Google Scholar 

  529. Collins J, Holder GE, Herbert H, Adams GG. Batten disease: features to facilitate early diagnosis. Br J Ophthalmol. 2006;90(9):1119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  530. Ruther K, Gal A, Kohlschutter A. The role of the ophthalmologist in the management of juvenile neuronal ceroid lipofuscinosis. Klin Monbl Augenheilkd. 2006;223(6):542–4.

    Article  CAS  PubMed  Google Scholar 

  531. Spalton DJ, Taylor DS, Sanders MD. Juvenile Batten’s disease: an ophthalmological assessment of 26 patients. Br J Ophthalmol. 1980;64(10):726–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  532. Inan C, Wong D, Wisniewski KE, Rose AL, Musarella MA. First African-American child with juvenile neuronal ceroid lipofuscinosis. Am J Med Genet. 1998;79(5):335–6.

    Article  CAS  PubMed  Google Scholar 

  533. Bohra LI, Weizer JS, Lee AG, Lewis RA. Vision loss as the presenting sign in juvenile neuronal ceroid lipofuscinosis. J Neuroophthalmol. 2000;20(2):111–5.

    Article  CAS  PubMed  Google Scholar 

  534. Eksandh LC, Ponjavic V, Ayyagari R, et al. Phenotypic expression of juvenile X-linked retinoschisis in Swedish families with different mutations in the XLRS1 gene. Arch Ophthalmol. 2000;118(8):1098–104.

    Article  CAS  PubMed  Google Scholar 

  535. Weleber RG. The dystrophic retina in multisystem disorders: the electroretinogram in neuronal ceroid lipofuscinoses. Eye (Lond). 1998;12(Pt 3b):580–90.

    Article  Google Scholar 

  536. Horiguchi M, Miyake Y. Batten disease—deteriorating course of ocular findings. Jpn J Ophthalmol. 1992;36(1):91–6.

    CAS  PubMed  Google Scholar 

  537. Schulz A, Kohlschutter A, Mink J, Simonati A, Williams R. NCL diseases—clinical perspectives. Biochim Biophys Acta. 2013;1832(11):1801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  538. Wisniewski KE, Zhong N, Philippart M. Pheno/genotypic correlations of neuronal ceroid lipofuscinoses. Neurology. 2001;57(4):576–81.

    Article  CAS  PubMed  Google Scholar 

  539. Prasad A, Kaye EM, Alroy J. Electron microscopic examination of skin biopsy as a cost-effective tool in the diagnosis of lysosomal storage diseases. J Child Neurol. 1996;11(4):301–8.

    Article  CAS  PubMed  Google Scholar 

  540. Sugita M, Dulaney JT, Moser HW. Ceramidase deficiency in Farber’s disease (lipogranulomatosis). Science. 1972;178(4065):1100–2.

    Article  CAS  PubMed  Google Scholar 

  541. Farber S, Cohen J, Uzman LL. Lipogranulomatosis; a new lipo-glycoprotein storage disease. J Mt Sinai Hosp N Y. 1957;24(6):816–37.

    CAS  PubMed  Google Scholar 

  542. Elleder M, Jerabkova M, Befekadu A, et al. Prosaposin deficiency—a rarely diagnosed, rapidly progressing, neonatal neurovisceral lipid storage disease. Report of a further patient. Neuropediatrics. 2005;36(3):171–80.

    Article  CAS  PubMed  Google Scholar 

  543. Antonarakis SE, Valle D, Moser HW, Moser A, Qualman SJ, Zinkham WH. Phenotypic variability in siblings with Farber disease. J Pediatr. 1984;104(3):406–9.

    Article  CAS  PubMed  Google Scholar 

  544. Amirhakimi GH, Haghighi P, Ghalambor MA, Honari S. Familial lipogranulomatosis (Farber’s disease). Clin Genet. 1976;9(6):625–30.

    Article  CAS  PubMed  Google Scholar 

  545. Pavone L, Moser HW, Mollica F, Reitano C, Durand P. Farber’s lipogranulomatosis: ceramidase deficiency and prolonged survival in three relatives. Johns Hopkins Med J. 1980;147(5):193–6.

    CAS  PubMed  Google Scholar 

  546. Fiumara A, Nigro F, Pavone L, Moser HW. Farber disease with prolonged survival. J Inherit Metab Dis. 1993;16(5):915–6.

    Article  CAS  PubMed  Google Scholar 

  547. Samuelsson K, Zetterstrom R. Ceramides in a patient with lipogranulomatosis (Farber’s disease) with chronic course. Scand J Clin Lab Invest. 1971;27(4):393–405.

    Article  CAS  PubMed  Google Scholar 

  548. Kattner E, Schafer A, Harzer K. Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease. Eur J Pediatr. 1997;156(4):292–5.

    Article  CAS  PubMed  Google Scholar 

  549. Eviatar L, Sklower SL, Wisniewski K, Feldman RS, Gochoco A. Farber lipogranulomatosis: an unusual presentation in a black child. Pediatr Neurol. 1986;2(6):371–4.

    Article  CAS  PubMed  Google Scholar 

  550. Jameson RA, Holt PJ, Keen JH. Farber’s disease (lysosomal acid ceramidase deficiency). Ann Rheum Dis. 1987;46(7):559–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  551. Fusch C, Huenges R, Moser HW, et al. A case of combined Farber and Sandhoff disease. Eur J Pediatr. 1989;148(6):558–62.

    Article  CAS  PubMed  Google Scholar 

  552. Levade T, Enders H, Schliephacke M, Harzer K. A family with combined Farber and Sandhoff, isolated Sandhoff and isolated fetal Farber disease: postnatal exclusion and prenatal diagnosis of Farber disease using lipid loading tests on intact cultured cells. Eur J Pediatr. 1995;154(8):643–8.

    Article  CAS  PubMed  Google Scholar 

  553. Schnabel D, Schroder M, Furst W, et al. Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem. 1992;267(5):3312–5.

    CAS  PubMed  Google Scholar 

  554. Cogan DG, Kuwabara T, Moser H, Hazard GW. Retinopathy in a case of Farber’s lipogranulomatosis. Arch Ophthalmol. 1966;75(6):752–7.

    Article  CAS  PubMed  Google Scholar 

  555. Nowaczyk MJ, Feigenbaum A, Silver MM, Callahan J, Levin A, Jay V. Bone marrow involvement and obstructive jaundice in Farber lipogranulomatosis: clinical and autopsy report of a new case. J Inherit Metab Dis. 1996;19(5):655–60.

    Article  CAS  PubMed  Google Scholar 

  556. Vormoor J, Ehlert K, Groll AH, Koch HG, Frosch M, Roth J. Successful hematopoietic stem cell transplantation in Farber disease. J Pediatr. 2004;144(1):132–4.

    Article  PubMed  Google Scholar 

  557. Malatack JJ, Consolini DM, Bayever E. The status of hematopoietic stem cell transplantation in lysosomal storage disease. Pediatr Neurol. 2003;29(5):391–403.

    Article  PubMed  Google Scholar 

  558. Peters C, Steward CG, National Marrow Donor Program, International Bone Marrow Transplant Registry, Working Party on Inborn Errors, EBMTG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant. 2003;31(4):229–39.

    Article  CAS  PubMed  Google Scholar 

  559. Berman ER, Livni N, Shapira E, Merin S, Levij IS. Congenital corneal clouding with abnormal systemic storage bodies: a new variant of mucolipidosis. J Pediatr. 1974;84(4):519–26.

    Article  CAS  PubMed  Google Scholar 

  560. Schiffmann R, Dwyer NK, Lubensky IA, et al. Constitutive achlorhydria in mucolipidosis type IV. Proc Natl Acad Sci U S A. 1998;95(3):1207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  561. Bargal R, Avidan N, Ben-Asher E, et al. Identification of the gene causing mucolipidosis type IV. Nat Genet. 2000;26(1):118–23.

    Article  CAS  PubMed  Google Scholar 

  562. Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, Borsani G. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet. 2000;67(5):1110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  563. Sun M, Goldin E, Stahl S, et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet. 2000;9(17):2471–8.

    Article  CAS  PubMed  Google Scholar 

  564. Bargal R, Avidan N, Olender T, et al. Mucolipidosis type IV: novel MCOLN1 mutations in Jewish and non-Jewish patients and the frequency of the disease in the Ashkenazi Jewish population. Hum Mutat. 2001;17(5):397–402.

    Article  CAS  PubMed  Google Scholar 

  565. Edelmann L, Dong J, Desnick RJ, Kornreich R. Carrier screening for mucolipidosis type IV in the American Ashkenazi Jewish population. Am J Hum Genet. 2002;70(4):1023–7.

    Article  PubMed  PubMed Central  Google Scholar 

  566. Paik KH, Song SM, Ki CS, et al. Identification of mutations in the GNPTA (MGC4170) gene coding for GlcNAc-phosphotransferase alpha/beta subunits in Korean patients with mucolipidosis type II or type IIIA. Hum Mutat. 2005;26(4):308–14.

    Article  CAS  PubMed  Google Scholar 

  567. Altarescu G, Sun M, Moore DF, et al. The neurogenetics of mucolipidosis type IV. Neurology. 2002;59(3):306–13.

    Article  CAS  PubMed  Google Scholar 

  568. Frei KP, Patronas NJ, Crutchfield KE, Altarescu G, Schiffmann R. Mucolipidosis type IV: characteristic MRI findings. Neurology. 1998;51(2):565–9.

    Article  CAS  PubMed  Google Scholar 

  569. Traboulsi EI, Maumenee IH. Ophthalmologic findings in mucolipidosis III (pseudo-Hurler polydystrophy). Am J Ophthalmol. 1986;102(5):592–7.

    Article  CAS  PubMed  Google Scholar 

  570. Smith JA, Chan CC, Goldin E, Schiffmann R. Noninvasive diagnosis and ophthalmic features of mucolipidosis type IV. Ophthalmology. 2002;109(3):588–94.

    Article  PubMed  Google Scholar 

  571. Pradhan SM, Atchaneeyasakul LO, Appukuttan B, et al. Electronegative electroretinogram in mucolipidosis IV. Arch Ophthalmol. 2002;120(1):45–50.

    Article  PubMed  Google Scholar 

  572. Bach G. Mucolipidosis type IV. Mol Genet Metab. 2001;73(3):197–203.

    Article  CAS  PubMed  Google Scholar 

  573. Ganesh A, Bruwer Z, Al-Thihli K. An update on ocular involvement in mucopolysaccharidoses. Curr Opin Ophthalmol. 2013;24(5):379–88.

    Article  PubMed  Google Scholar 

  574. Dorfman A, Lorincz AE. Occurrence of urinary acid mucopolysaccharides in the hurler syndrome. Proc Natl Acad Sci U S A. 1957;43(6):443–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  575. Brante G. Gargoylism; a mucopolysaccharidosis. Scand J Clin Lab Invest. 1952;4(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  576. Connell P, McCreery K, Doyle A, Darcy F, O’Meara A, Brosnahan D. Central corneal thickness and its relationship to intraocular pressure in mucopolysaccararidoses-1 following bone marrow transplantation. J AAPOS. 2008;12(1):7–10.

    Article  PubMed  Google Scholar 

  577. Fahnehjelm KT, Chen E, Winiarski J. Corneal hysteresis in mucopolysaccharidosis I and VI. Acta Ophthalmol. 2012;90(5):445–8.

    Article  PubMed  Google Scholar 

  578. Mullaney P, Awad AH, Millar L. Glaucoma in mucopolysaccharidosis 1-H/S. J Pediatr Ophthalmol Strabismus. 1996;33(2):127–31.

    CAS  PubMed  Google Scholar 

  579. Collins ML, Traboulsi EI, Maumenee IH. Optic nerve head swelling and optic atrophy in the systemic mucopolysaccharidoses. Ophthalmology. 1990;97(11):1445–9.

    Article  CAS  PubMed  Google Scholar 

  580. Caruso RC, Kaiser-Kupfer MI, Muenzer J, Ludwig IH, Zasloff MA, Mercer PA. Electroretinographic findings in the mucopolysaccharidoses. Ophthalmology. 1986;93(12):1612–6.

    Article  CAS  PubMed  Google Scholar 

  581. Coletti HY, Aldenhoven M, Yelin K, Poe MD, Kurtzberg J, Escolar ML. Long-term functional outcomes of children with hurler syndrome treated with unrelated umbilical cord blood transplantation. JIMD Rep. 2015;20:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  582. Poe MD, Chagnon SL, Escolar ML. Early treatment is associated with improved cognition in Hurler syndrome. Ann Neurol. 2014;76(5):747–53.

    Article  PubMed  Google Scholar 

  583. Gullingsrud EO, Krivit W, Summers CG. Ocular abnormalities in the mucopolysaccharidoses after bone marrow transplantation. Longer follow-up. Ophthalmology. 1998;105(6):1099–105.

    Article  CAS  PubMed  Google Scholar 

  584. Pitz S, Ogun O, Bajbouj M, Arash L, Schulze-Frenking G, Beck M. Ocular changes in patients with mucopolysaccharidosis I receiving enzyme replacement therapy: a 4-year experience. Arch Ophthalmol. 2007;125(10):1353–6.

    Article  CAS  PubMed  Google Scholar 

  585. Bothun ED, Decanini A, Summers CG, Orchard PJ, Tolar J. Outcome of penetrating keratoplasty for mucopolysaccharidoses. Arch Ophthalmol. 2011;129(2):138–44.

    Article  PubMed  Google Scholar 

  586. Sati A, Ramappa M, Chaurasia S, Prasad SM. Deep anterior lamellar keratoplasty in case of Hurler-Scheie syndrome. BMJ Case Rep. 2014;2014.

    Google Scholar 

  587. Hunter C. A rare disease in two brothers. Proc R Soc Med. 1917;10(Sect Study Dis Child):104–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  588. Bach G, Eisenberg Jr F, Cantz M, Neufeld EF. The defect in the Hunter syndrome: deficiency of sulfoiduronate sulfatase. Proc Natl Acad Sci U S A. 1973;70(7):2134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  589. Nielsen TC, Rozek T, Hopwood JJ, Fuller M. Determination of urinary oligosaccharides by high-performance liquid chromatography/electrospray ionization-tandem mass spectrometry: application to Hunter syndrome. Anal Biochem. 2010;402(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  590. Wang RY, Cambray-Forker EJ, Ohanian K, et al. Treatment reduces or stabilizes brain imaging abnormalities in patients with MPS I and II. Mol Genet Metab. 2009;98(4):406–11.

    Article  CAS  PubMed  Google Scholar 

  591. Kresse H, Wiesmann U, Cantz M, Hall CW, Neufeld EF. Biochemical heterogeneity of the Sanfilippo syndrome: preliminary characterization of two deficient factors. Biochem Biophys Res Commun. 1971;42(5):892–8.

    Article  CAS  PubMed  Google Scholar 

  592. Kresse H, The NEF, Sanfilippo A. corrective factor. Purification and mode of action. J Biol Chem. 1972;247(7):2164–70.

    CAS  PubMed  Google Scholar 

  593. Valstar MJ, Ruijter GJ, van Diggelen OP, Poorthuis BJ, Wijburg FA. Sanfilippo syndrome: a mini-review. J Inherit Metab Dis. 2008;31(2):240–52.

    Article  CAS  PubMed  Google Scholar 

  594. Ruijter GJ, Valstar MJ, van de Kamp JM, et al. Clinical and genetic spectrum of Sanfilippo type C (MPS IIIC) disease in The Netherlands. Mol Genet Metab. 2008;93(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  595. van de Kamp JJ, Niermeijer MF, von Figura K, Giesberts MA. Genetic heterogeneity and clinical variability in the Sanfilippo syndrome (types A, B, and C). Clin Genet. 1981;20(2):152–60.

    Article  PubMed  Google Scholar 

  596. Alroy J, Haskins M, Birk DE. Altered corneal stromal matrix organization is associated with mucopolysaccharidosis I, III and VI. Exp Eye Res. 1999;68(5):523–30.

    Article  CAS  PubMed  Google Scholar 

  597. Sivakumur P, Wraith JE. Bone marrow transplantation in mucopolysaccharidosis type IIIA: a comparison of an early treated patient with his untreated sibling. J Inherit Metab Dis. 1999;22(7):849–50.

    Article  CAS  PubMed  Google Scholar 

  598. Jakobkiewicz-Banecka J, Wegrzyn A, Wegrzyn G. Substrate deprivation therapy: a new hope for patients suffering from neuronopathic forms of inherited lysosomal storage diseases. J Appl Genet. 2007;48(4):383–8.

    Article  PubMed  Google Scholar 

  599. de Ruijter J, Valstar MJ, Narajczyk M, et al. Genistein in Sanfilippo disease: a randomized controlled crossover trial. Ann Neurol. 2012;71(1):110–20.

    Article  PubMed  CAS  Google Scholar 

  600. Nelson J, Broadhead D, Mossman J. Clinical findings in 12 patients with MPS IV A (Morquio’s disease). Further evidence for heterogeneity. Part I: Clinical and biochemical findings. Clin Genet. 1988;33(2):111–20.

    Article  CAS  PubMed  Google Scholar 

  601. Levin LS, Jorgenson RJ, Salinas CF. Oral findings in the Morquio syndrome (mucopolysaccharidosis IV). Oral Surg Oral Med Oral Pathol. 1975;39(3):390–5.

    Article  CAS  PubMed  Google Scholar 

  602. Leadley RM, Lang S, Misso K, et al. A systematic review of the prevalence of Morquio A syndrome: challenges for study reporting in rare diseases. Orphanet J Rare Dis. 2014;9(1):173.

    Article  PubMed  PubMed Central  Google Scholar 

  603. Olsen H, Baggesen K, Sjolie AK. Cataracts in Morquio syndrome (mucopolysaccharidosis IV A). Ophthalmic Paediatr Genet. 1993;14(2):87–9.

    Article  CAS  PubMed  Google Scholar 

  604. Couprie J, Denis P, Guffon N, Reynes N, Masset H, Beby F. Ocular manifestations in patients affected by Morquio syndrome (MPS IV). J Fr Ophtalmol. 2010;33(9):617–22.

    Article  CAS  PubMed  Google Scholar 

  605. Maroteaux P, Leveque B, Marie J, Lamy M. A new dysostosis with urinary elimination of chondroitin sulfate B. Presse Med. 1963;71:1849–52.

    CAS  PubMed  Google Scholar 

  606. El Dib RP, Pastores GM. A systematic review of new advances in the management of mucopolysaccharidosis VI (Maroteaux-Lamy syndrome): focus on galsulfase. Biologics. 2009;3:459–68.

    PubMed  PubMed Central  Google Scholar 

  607. Koseoglu ST, Harmatz P, Turbeville S, Nicely H. Reversed papilledema in an MPS VI patient with galsulfase (Naglazyme) therapy. Int Ophthalmol. 2009;29(4):267–9.

    Article  PubMed  Google Scholar 

  608. Rahmati-Kamel M, Javadi M, Shojaei A, Eslani M, Karimian F. Deep anterior lamellar keratoplasty for Maroteaux-Lamy syndrome. Cornea. 2010;29(12):1459–61.

    Article  PubMed  Google Scholar 

  609. Vervoort R, Islam MR, Sly WS, et al. Molecular analysis of patients with beta-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII. Am J Hum Genet. 1996;58(3):457–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  610. Sly WS, Quinton BA, McAlister WH, Rimoin DL. Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr. 1973;82(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  611. Molyneux AJ, Blair E, Coleman N, Daish P. Mucopolysaccharidosis type VII associated with hydrops fetalis: histopathological and ultrastructural features with genetic implications. J Clin Pathol. 1997;50(3):252–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  612. Bernsen PL, Wevers RA, Gabreels FJ, Lamers KJ, Sonnen AE, Stekhoven JH. Phenotypic expression in mucopolysaccharidosis VII. J Neurol Neurosurg Psychiatry. 1987;50(6):699–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  613. de Kremer RD, Givogri I, Argarana CE, et al. Mucopolysaccharidosis type VII (beta-glucuronidase deficiency): a chronic variant with an oligosymptomatic severe skeletal dysplasia. Am J Med Genet. 1992;44(2):145–52.

    Article  PubMed  Google Scholar 

  614. Lee JE, Falk RE, Ng WG, Donnell GN. Beta-glucuronidase deficiency. A heterogeneous mucopolysaccharidosis. Am J Dis Child. 1985;139(1):57–9.

    Article  CAS  PubMed  Google Scholar 

  615. Irani D, Kim HS, El-Hibri H, Dutton RV, Beaudet A, Armstrong D. Postmortem observations on beta-glucuronidase deficiency presenting as hydrops fetalis. Ann Neurol. 1983;14(4):486–90.

    Article  CAS  PubMed  Google Scholar 

  616. Shimozawa N. Molecular and clinical aspects of peroxisomal diseases. J Inherit Metab Dis. 2007;30(2):193–7.

    Article  CAS  PubMed  Google Scholar 

  617. Vamecq J, Cherkaoui-Malki M, Andreoletti P, Latruffe N. The human peroxisome in health and disease: the story of an oddity becoming a vital organelle. Biochimie. 2014;98:4–15.

    Article  CAS  PubMed  Google Scholar 

  618. Lazarow PB, De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976;73(6):2043–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  619. Bowen P, Lee CS, Zellweger H, Lindenberg R. A familial syndrome of multiple congenital defects. Bull Johns Hopkins Hosp. 1964;114:402–14.

    CAS  PubMed  Google Scholar 

  620. Kelley RI. Review: the cerebrohepatorenal syndrome of Zellweger, morphologic and metabolic aspects. Am J Med Genet. 1983;16(4):503–17.

    Article  CAS  PubMed  Google Scholar 

  621. Goldfischer S, Moore CL, Johnson AB, et al. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science. 1973;182(4107):62–4.

    Article  CAS  PubMed  Google Scholar 

  622. Datta NS, Wilson GN, Hajra AK. Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. N Engl J Med. 1984;311(17):1080–3.

    Article  CAS  PubMed  Google Scholar 

  623. Wanders RJ. Metabolic and molecular basis of peroxisomal disorders: a review. Am J Med Genet A. 2004;126A(4):355–75.

    Article  PubMed  Google Scholar 

  624. Kelley RI, Datta NS, Dobyns WB, et al. Neonatal adrenoleukodystrophy: new cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am J Med Genet. 1986;23(4):869–901.

    Article  CAS  PubMed  Google Scholar 

  625. Budden SS, Kennaway NG, Buist NR, Poulos A, Weleber RG. Dysmorphic syndrome with phytanic acid oxidase deficiency, abnormal very long chain fatty acids, and pipecolic acidemia: studies in four children. J Pediatr. 1986;108(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  626. Hittner HM, Kretzer FL, Mehta RS. Zellweger syndrome. Lenticular opacities indicating carrier status and lens abnormalities characteristic of homozygotes. Arch Ophthalmol. 1981;99(11):1977–82.

    Article  CAS  PubMed  Google Scholar 

  627. Folz SJ, Trobe JD. The peroxisome and the eye. Surv Ophthalmol. 1991;35(5):353–68.

    Article  CAS  PubMed  Google Scholar 

  628. Lyons CJ, Castano G, McCormick AQ, Applegarth D. Leopard spot retinal pigmentation in infancy indicating a peroxisomal disorder. Br J Ophthalmol. 2004;88(2):191–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  629. Al-Hazzaa SA, Ozand PT. Peroxisomal bifunctional enzyme deficiency with associated retinal findings. Ophthalmic Genet. 1997;18(2):93–9.

    Article  CAS  PubMed  Google Scholar 

  630. Ek J, Kase BF, Reith A, Bjorkhem I, Pedersen JI. Peroxisomal dysfunction in a boy with neurologic symptoms and amaurosis (Leber disease): clinical and biochemical findings similar to those observed in Zellweger syndrome. J Pediatr. 1986;108(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  631. Weleber RG, Tongue AC, Kennaway NG, Budden SS, Buist NR. Ophthalmic manifestations of infantile phytanic acid storage disease. Arch Ophthalmol. 1984;102(9):1317–21.

    Article  CAS  PubMed  Google Scholar 

  632. Stanescu B, Dralands L. Cerebro-hepato-renal (Zellweger’s) syndrome. Ocular involvement. Arch Ophthalmol. 1972;87(5):590–2.

    Article  CAS  PubMed  Google Scholar 

  633. Cohen SM, Green WR, de la Cruz ZC, et al. Ocular histopathologic studies of neonatal and childhood adrenoleukodystrophy. Am J Ophthalmol. 1983;95(1):82–96.

    Article  CAS  PubMed  Google Scholar 

  634. Bams-Mengerink AM, Koelman JH, Waterham H, Barth PG, Poll-The BT. The neurology of rhizomelic chondrodysplasia punctata. Orphanet J Rare Dis. 2013;8:174.

    Article  PubMed  PubMed Central  Google Scholar 

  635. Braverman N, Steel G, Lin P, Moser A, Moser H, Valle D. PEX7 gene structure, alternative transcripts, and evidence for a founder haplotype for the frequent RCDP allele, L292ter. Genomics. 2000;63(2):181–92.

    Article  CAS  PubMed  Google Scholar 

  636. Aron JJ, Aron-Rosa D, Llouquet JL. Two cases of chondrodysplasia punctuate are reported. Arch Ophtalmol (Paris). 1977;37(3):197–206.

    CAS  Google Scholar 

  637. Hammond A. Dysplasia epiphysialis punctata with ocular anomalies. Br J Ophthalmol. 1970;54(11):755–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  638. Gray RG, Green A, Chapman S, McKeown C, Schutgens RB, Wanders RJ. Rhizomelic chondrodysplasia punctata—a new clinical variant. J Inherit Metab Dis. 1992;15(6):931–2.

    Article  CAS  PubMed  Google Scholar 

  639. Bezman L, Moser HW. Incidence of X-linked adrenoleukodystrophy and the relative frequency of its phenotypes. Am J Med Genet. 1998;76(5):415–9.

    Article  CAS  PubMed  Google Scholar 

  640. Davis LE, Snyder RD, Orth DN, Nicholson WE, Kornfeld M, Seelinger DF. Adrenoleukodystrophy and adrenomyeloneuropathy associated with partial adrenal insufficiency in three generations of a kindred. Am J Med. 1979;66(2):342–7.

    Article  CAS  PubMed  Google Scholar 

  641. Migeon BR, Moser HW, Moser AB, Axelman J, Sillence D, Norum RA. Adrenoleukodystrophy: evidence for X linkage, inactivation, and selection favoring the mutant allele in heterozygous cells. Proc Natl Acad Sci U S A. 1981;78(8):5066–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  642. Rizzo WB, Leshner RT, Odone A, et al. Dietary erucic acid therapy for X-linked adrenoleukodystrophy. Neurology. 1989;39(11):1415–22.

    Article  CAS  PubMed  Google Scholar 

  643. Berger J, Gartner J. X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. Biochim Biophys Acta. 2006;1763(12):1721–32.

    Article  CAS  PubMed  Google Scholar 

  644. Bezman L, Moser AB, Raymond GV, et al. Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol. 2001;49(4):512–7.

    Article  CAS  PubMed  Google Scholar 

  645. Kemp S, Pujol A, Waterham HR, et al. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum Mutat. 2001;18(6):499–515.

    Article  CAS  PubMed  Google Scholar 

  646. Moser HW, Loes DJ, Melhem ER, et al. X-Linked adrenoleukodystrophy: overview and prognosis as a function of age and brain magnetic resonance imaging abnormality. A study involving 372 patients. Neuropediatrics. 2000;31(5):227–39.

    Article  CAS  PubMed  Google Scholar 

  647. Engelen M, Barbier M, Dijkstra IM, et al. X-linked adrenoleukodystrophy in women: a cross-sectional cohort study. Brain. 2014;137(Pt 3):693–706.

    Article  PubMed  Google Scholar 

  648. Traboulsi EI, Maumenee IH. Ophthalmologic manifestations of X-linked childhood adrenoleukodystrophy. Ophthalmology. 1987;94(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  649. Sack Jr GH, Morrell JC. Visual pigment gene changes in adrenoleukodystrophy. Invest Ophthalmol Vis Sci. 1993;34(9):2634–7.

    PubMed  Google Scholar 

  650. Alpern M, Sack Jr GH, Krantz DH, Jenness J, Zhang H, Moser HW. Chromosomal rearrangement segregating with adrenoleukodystrophy: associated changes in color vision. Proc Natl Acad Sci U S A. 1993;90(20):9494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  651. Feil R, Aubourg P, Mosser J, et al. Adrenoleukodystrophy: a complex chromosomal rearrangement in the Xq28 red/green-color-pigment gene region indicates two possible gene localizations. Am J Hum Genet. 1991;49(6):1361–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  652. Moser HW, Raymond GV, Lu SE, et al. Follow-up of 89 asymptomatic patients with adrenoleukodystrophy treated with Lorenzo’s oil. Arch Neurol. 2005;62(7):1073–80.

    Article  PubMed  Google Scholar 

  653. Shapiro E, Krivit W, Lockman L, et al. Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy. Lancet. 2000;356(9231):713–8.

    Article  CAS  PubMed  Google Scholar 

  654. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol. 2012;507:187–98.

    Article  CAS  PubMed  Google Scholar 

  655. Jansen GA, Waterham HR, Wanders RJ. Molecular basis of Refsum disease: sequence variations in phytanoyl-CoA hydroxylase (PHYH) and the PTS2 receptor (PEX7). Hum Mutat. 2004;23(3):209–18.

    Article  CAS  PubMed  Google Scholar 

  656. Wills AJ, Manning NJ, Reilly MM. Refsum’s disease. QJM. 2001;94(8):403–6.

    Article  CAS  PubMed  Google Scholar 

  657. Skjeldal OH, Stokke O, Refsum S, Norseth J, Petit H. Clinical and biochemical heterogeneity in conditions with phytanic acid accumulation. J Neurol Sci. 1987;77(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  658. Gibberd FB, Billimoria JD, Goldman JM, et al. Heredopathia atactica polyneuritiformis: Refsum’s disease. Acta Neurol Scand. 1985;72(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  659. Claridge KG, Gibberd FB, Sidey MC. Refsum disease: the presentation and ophthalmic aspects of Refsum disease in a series of 23 patients. Eye (Lond). 1992;6(Pt 4):371–5.

    Article  Google Scholar 

  660. Hansen E, Bachen NI, Flage T. Refsum’s disease. Eye manifestations in a patient treated with low phytol low phytanic acid diet. Acta Ophthalmol (Copenh). 1979;57(5):899–913.

    Article  CAS  Google Scholar 

  661. Lou JS, Snyder R, Griggs RC. Refsum’s disease: long term treatment preserves sensory nerve action potentials and motor function. J Neurol Neurosurg Psychiatry. 1997;62(6):671–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  662. Danpure CJ. Recent advances in the understanding, diagnosis and treatment of primary hyperoxaluria type 1. J Inherit Metab Dis. 1989;12(2):210–24.

    Article  CAS  PubMed  Google Scholar 

  663. Danpure CJ, Jennings PR. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986;201(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  664. Leumann E, Hoppe B. The primary hyperoxalurias. J Am Soc Nephrol. 2001;12(9):1986–93.

    CAS  PubMed  Google Scholar 

  665. Al-Eisa AA, Samhan M, Naseef M. End-stage renal disease in Kuwaiti children: an 8-year experience. Transplant Proc. 2004;36(6):1788–91.

    Article  CAS  PubMed  Google Scholar 

  666. Breed A, Chesney R, Friedman A, Gilbert E, Langer L, Lattoraca R. Oxalosis-induced bone disease: a complication of transplantation and prolonged survival in primary hyperoxaluria. J Bone Joint Surg Am. 1981;63(2):310–6.

    Article  CAS  PubMed  Google Scholar 

  667. Hoppe B, Beck BB, Milliner DS. The primary hyperoxalurias. Kidney Int. 2009;75(12):1264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  668. Small KW, Letson R, Scheinman J. Ocular findings in primary hyperoxaluria. Arch Ophthalmol. 1990;108(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  669. Meredith TA, Wright JD, Gammon JA, Fellner SK, Warshaw BL, Maio M. Ocular involvement in primary hyperoxaluria. Arch Ophthalmol. 1984;102(4):584–7.

    Article  CAS  PubMed  Google Scholar 

  670. Fielder AR, Garner A, Chambers TL. Ophthalmic manifestations of primary oxalosis. Br J Ophthalmol. 1980;64(10):782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  671. Karlberg N, Jalanko H, Perheentupa J, Lipsanen-Nyman M. Mulibrey nanism: clinical features and diagnostic criteria. J Med Genet. 2004;41(2):92–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  672. Avela K, Lipsanen-Nyman M, Perheentupa J, et al. Assignment of the mulibrey nanism gene to 17q by linkage and linkage-disequilibrium analysis. Am J Hum Genet. 1997;60(4):896–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  673. Perheentupa J, Autio S, Leisti S, Raitta C, Tuuteri L. Mulibrey nanism, an autosomal recessive syndrome with pericardial constriction. Lancet. 1973;2(7825):351–5.

    Article  CAS  PubMed  Google Scholar 

  674. Lipsanen-Nyman M, Perheentupa J, Rapola J, Sovijarvi A, Kupari M. Mulibrey heart disease: clinical manifestations, long-term course, and results of pericardiectomy in a series of 49 patients born before 1985. Circulation. 2003;107(22):2810–5.

    Article  PubMed  Google Scholar 

  675. Hamalainen RH, Mowat D, Gabbett MT, O’Brien TA, Kallijarvi J, Lehesjoki AE. Wilms’ tumor and novel TRIM37 mutations in an Australian patient with mulibrey nanism. Clin Genet. 2006;70(6):473–9.

    Article  CAS  PubMed  Google Scholar 

  676. Karlberg N, Karlberg S, Karikoski R, Mikkola S, Lipsanen-Nyman M, Jalanko H. High frequency of tumours in Mulibrey nanism. J Pathol. 2009;218(2):163–71.

    Article  PubMed  Google Scholar 

  677. Karlberg S, Toppari J, Karlberg N, et al. Testicular failure and male infertility in the monogenic Mulibrey nanism disorder. J Clin Endocrinol Metab. 2011;96(11):3399–407.

    Article  CAS  PubMed  Google Scholar 

  678. Tarkkanen A, Raitta C, Perheentupa J. Mulibrey nanism, an autosomal recessive syndrome with ocular involvement. Acta Ophthalmol (Copenh). 1982;60(4):628–33.

    Article  CAS  Google Scholar 

  679. Behzadnia N, Sharif-Kashani B, Ahmadi ZH, Mirhosseini SM. Mulibrey nanism in a 35 year-old Iranian female with constrictive pericarditis. Tanaffos. 2011;10(1):48–51.

    PubMed  PubMed Central  Google Scholar 

  680. Lerner-Ellis JP, Tirone JC, Pawelek PD, et al. Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nat Genet. 2006;38(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  681. Mudd SH, Levy HL, Abeles RH, Jennedy Jr JP. A derangement in B 12 metabolism leading to homocystinemia, cystathioninemia and methylmalonic aciduria. Biochem Biophys Res Commun. 1969;35(1):121–6.

    Article  CAS  PubMed  Google Scholar 

  682. Kim J, Gherasim C, Banerjee R. Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci U S A. 2008;105(38):14551–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  683. Mamlok RJ, Isenberg JN, Rassin DK, Norcross K, Tallan HH. A cobalamin metabolic defect with homocystinuria, methylmalonic aciduria and macrocytic anemia. Neuropediatrics. 1986;17(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  684. Rosenblatt DS, Aspler AL, Shevell MI, Pletcher BA, Fenton WA, Seashore MR. Clinical heterogeneity and prognosis in combined methylmalonic aciduria and homocystinuria (cblC). J Inherit Metab Dis. 1997;20(4):528–38.

    Article  CAS  PubMed  Google Scholar 

  685. Van Hove JL, Van Damme-Lombaerts R, Grunewald S, et al. Cobalamin disorder Cbl-C presenting with late-onset thrombotic microangiopathy. Am J Med Genet. 2002;111(2):195–201.

    Article  PubMed  Google Scholar 

  686. Ben-Omran TI, Wong H, Blaser S, Feigenbaum A. Late-onset cobalamin-C disorder: a challenging diagnosis. Am J Med Genet A. 2007;143A(9):979–84.

    Article  CAS  PubMed  Google Scholar 

  687. Patton N, Beatty S, Lloyd IC, Wraith JE. Optic atrophy in association with cobalamin C (cblC) disease. Ophthalmic Genet. 2000;21(3):151–4.

    Article  CAS  PubMed  Google Scholar 

  688. Gizicki R, Robert MC, Gomez-Lopez L, et al. Long-term visual outcome of methylmalonic aciduria and homocystinuria, cobalamin C type. Ophthalmology. 2014;121(1):381–6.

    Article  PubMed  Google Scholar 

  689. Carrillo-Carrasco N, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. II. Complications, pathophysiology, and outcomes. J Inherit Metab Dis. 2012;35(1):103–14.

    Article  CAS  PubMed  Google Scholar 

  690. Robb RM, Dowton SB, Fulton AB, Levy HL. Retinal degeneration in vitamin B12 disorder associated with methylmalonic aciduria and sulfur amino acid abnormalities. Am J Ophthalmol. 1984;97(6):691–6.

    Article  CAS  PubMed  Google Scholar 

  691. Mitchell GA, Watkins D, Melancon SB, et al. Clinical heterogeneity in cobalamin C variant of combined homocystinuria and methylmalonic aciduria. J Pediatr. 1986;108(3):410–5.

    Article  CAS  PubMed  Google Scholar 

  692. Huemer M, Simma B, Fowler B, Suormala T, Bodamer OA, Sass JO. Prenatal and postnatal treatment in cobalamin C defect. J Pediatr. 2005;147(4):469–72.

    Article  CAS  PubMed  Google Scholar 

  693. Carrillo-Carrasco N, Chandler RJ, Venditti CP. Combined methylmalonic acidemia and homocystinuria, cblC type. I. Clinical presentations, diagnosis and management. J Inherit Metab Dis. 2012;35(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  694. Weisfeld-Adams JD, Morrissey MA, Kirmse BM, et al. Newborn screening and early biochemical follow-up in combined methylmalonic aciduria and homocystinuria, cblC type, and utility of methionine as a secondary screening analyte. Mol Genet Metab. 2010;99(2):116–23.

    Article  CAS  PubMed  Google Scholar 

  695. Wolf B, Hsia YE, Sweetman L, et al. Multiple carboxylase deficiency: clinical and biochemical improvement following neonatal biotin treatment. Pediatrics. 1981;68(1):113–8.

    CAS  PubMed  Google Scholar 

  696. Wolf B. Worldwide survey of neonatal screening for biotinidase deficiency. J Inherit Metab Dis. 1991;14(6):923–7.

    Article  CAS  PubMed  Google Scholar 

  697. Giardino D, Bettio D, Simoni G. 12q13 fragility in a family with recurrent spontaneous abortions: expression of the fragile site under different culture conditions. Ann Genet. 1990;33(2):88–91.

    CAS  PubMed  Google Scholar 

  698. Salbert BA, Astruc J, Wolf B. Ophthalmologic findings in biotinidase deficiency. Ophthalmologica. 1993;206(4):177–81.

    Article  CAS  PubMed  Google Scholar 

  699. Hayati AA, Wan-Hitam WH, Cheong MT, Yunus R, Shatriah I. Optic neuritis in a child with biotinidase deficiency: case report and literature review. Clin Ophthalmol. 2012;6:389–95.

    PubMed  PubMed Central  Google Scholar 

  700. Horvath R, Freisinger P, Rubio R, et al. Congenital cataract, muscular hypotonia, developmental delay and sensorineural hearing loss associated with a defect in copper metabolism. J Inherit Metab Dis. 2005;28(4):479–92.

    Article  CAS  PubMed  Google Scholar 

  701. Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH. A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics. 1962;29:764–79.

    CAS  PubMed  Google Scholar 

  702. Danks DM, Cartwright E, Campbell PE, Mayne V. Is Menkes’ syndrome a heritable disorder of connective tissue? Lancet. 1971;2(7733):1089.

    Article  CAS  PubMed  Google Scholar 

  703. Kaler SG. Menkes disease. Adv Pediatr. 1994;41:263–304.

    CAS  PubMed  Google Scholar 

  704. Swartz EN. A child with kinky hair. CMAJ. 2002;166(11):1442–3.

    PubMed  PubMed Central  Google Scholar 

  705. Kaler SG. Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr. 1998;67(5 Suppl):1029S–34.

    CAS  PubMed  Google Scholar 

  706. Hsich GE, Robertson RL, Irons M, Soul JS, du Plessis AJ. Cerebral infarction in Menkes’ disease. Pediatr Neurol. 2000;23(5):425–8.

    Article  CAS  PubMed  Google Scholar 

  707. Bacopoulou F, Henderson L, Philip SG. Menkes disease mimicking non-accidental injury. Arch Dis Child. 2006;91(11):919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  708. Gasch AT, Caruso RC, Kaler SG, Kaiser-Kupfer M. Menkes’ syndrome: ophthalmic findings. Ophthalmology. 2002;109(8):1477–83.

    Article  PubMed  Google Scholar 

  709. Ferreira RC, Heckenlively JR, Menkes JH, Bateman JB. Menkes disease. New ocular and electroretinographic findings. Ophthalmology. 1998;105(6):1076–8.

    Article  CAS  PubMed  Google Scholar 

  710. Kaler SG, Goldstein DS, Holmes C, Salerno JA, Gahl WA. Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease. Ann Neurol. 1993;33(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  711. Kodama H, Sato E, Yanagawa Y, Ozawa H, Kozuma T. Biochemical indicator for evaluation of connective tissue abnormalities in Menkes’ disease. J Pediatr. 2003;142(6):726–8.

    Article  CAS  PubMed  Google Scholar 

  712. Christodoulou J, Danks DM, Sarkar B, et al. Early treatment of Menkes disease with parenteral copper-histidine: long-term follow-up of four treated patients. Am J Med Genet. 1998;76(2):154–64.

    Article  CAS  PubMed  Google Scholar 

  713. Kaler SG, Holmes CS, Goldstein DS, et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358(6):605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  714. Kaler SG, Liew CJ, Donsante A, Hicks JD, Sato S, Greenfield JC. Molecular correlates of epilepsy in early diagnosed and treated Menkes disease. J Inherit Metab Dis. 2010;33(5):583–9.

    Article  PubMed  PubMed Central  Google Scholar 

  715. Mufti AR, Burstein E, Csomos RA, et al. XIAP Is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Mol Cell. 2006;21(6):775–85.

    Article  CAS  PubMed  Google Scholar 

  716. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993;5(4):327–37.

    Article  CAS  PubMed  Google Scholar 

  717. Walshe JM. Wilson’s disease; new oral therapy. Lancet. 1956;270(6906):25–6.

    Article  CAS  PubMed  Google Scholar 

  718. Singh P, Ahluwalia A, Saggar K, Grewal CS. Wilson’s disease: MRI features. J Pediatr Neurosci. 2011;6(1):27–8.

    PubMed  PubMed Central  Google Scholar 

  719. Finelli PF. Kayser-Fleischer ring: hepatolenticular degeneration (Wilson’s disease). Neurology. 1995;45(7):1261–2.

    Article  CAS  PubMed  Google Scholar 

  720. Das SK, Ray K. Wilson’s disease: an update. Nat Clin Pract Neurol. 2006;2(9):482–93.

    Article  PubMed  CAS  Google Scholar 

  721. Rodman R, Burnstine M, Esmaeli B, et al. Wilson’s disease: presymptomatic patients and Kayser-Fleischer rings. Ophthalmic Genet. 1997;18(2):79–85.

    Article  CAS  PubMed  Google Scholar 

  722. Sullivan CA, Chopdar A, Shun-Shin GA. Dense Kayser-Fleischer ring in asymptomatic Wilson’s disease (hepatolenticular degeneration). Br J Ophthalmol. 2002;86(1):114.

    Article  PubMed  PubMed Central  Google Scholar 

  723. Albrecht P, Muller AK, Ringelstein M, et al. Retinal neurodegeneration in Wilson’s disease revealed by spectral domain optical coherence tomography. PLoS One. 2012;7(11), e49825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  724. Satishchandra P, Swamy HS. Visual and brain stem auditory evoked responses in Wilson’s disease. Acta Neurol Scand. 1989;79(2):108–13.

    Article  CAS  PubMed  Google Scholar 

  725. Satishchandra P, Ravishankar NK. Visual pathway abnormalities Wilson’s disease: an electrophysiological study using electroretinography and visual evoked potentials. J Neurol Sci. 2000;176(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  726. Kirkham TH, Kamin DF. Slow saccadic eye movements in Wilson’s disease. J Neurol Neurosurg Psychiatry. 1974;37(2):191–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  727. Lee MS, Kim YD, Lyoo CH. Oculogyric crisis as an initial manifestation of Wilson’s disease. Neurology. 1999;52(8):1714–5.

    Article  CAS  PubMed  Google Scholar 

  728. Curran RE, Hedges 3rd TR, Boger 3rd WP. Loss of accommodation and the near response in Wilson’s disease. J Pediatr Ophthalmol Strabismus. 1982;19(3):157–60.

    CAS  PubMed  Google Scholar 

  729. Roberts EA, Schilsky ML. Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47(6):2089–111.

    Article  CAS  PubMed  Google Scholar 

  730. Cossu P, Pirastu M, Nucaro A, et al. Prenatal diagnosis of Wilson’s disease by analysis of DNA polymorphism. N Engl J Med. 1992;327(1):57.

    Article  CAS  PubMed  Google Scholar 

  731. Walshe JM, Yealland M. Wilson’s disease: the problem of delayed diagnosis. J Neurol Neurosurg Psychiatry. 1992;55(8):692–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  732. Hoogenraad TU. Paradigm shift in treatment of Wilson’s disease: zinc therapy now treatment of choice. Brain Dev. 2006;28(3):141–6.

    Article  PubMed  Google Scholar 

  733. Town M, Jean G, Cherqui S, et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet. 1998;18(4):319–24.

    Article  CAS  PubMed  Google Scholar 

  734. Cogan DG. Ocular correlates of inborn metabolic defects. Can Med Assoc J. 1966;95(21):1055–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  735. Jonas AJ, Greene AA, Smith ML, Schneider JA. Cystine accumulation and loss in normal, heterozygous, and cystinotic fibroblasts. Proc Natl Acad Sci U S A. 1982;79(14):4442–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  736. Gahl WA, Thoene JG, Schneider JA. Cystinosis. N Engl J Med. 2002;347(2):111–21.

    Article  PubMed  Google Scholar 

  737. Gahl WA. Cystinosis coming of age. Adv Pediatr. 1986;33:95–126.

    CAS  PubMed  Google Scholar 

  738. Gahl WA, Schneider JA, Thoene JG, Chesney R. Course of nephropathic cystinosis after age 10 years. J Pediatr. 1986;109(4):605–8.

    Article  CAS  PubMed  Google Scholar 

  739. Fivush B, Green OC, Porter CC, Balfe JW, O’Regan S, Gahl WA. Pancreatic endocrine insufficiency in posttransplant cystinosis. Am J Dis Child. 1987;141(10):1087–9.

    CAS  PubMed  Google Scholar 

  740. Fivush B, Flick JA, Gahl WA. Pancreatic exocrine insufficiency in a patient with nephropathic cystinosis. J Pediatr. 1988;112(1):49–51.

    Article  CAS  PubMed  Google Scholar 

  741. Fink JK, Brouwers P, Barton N, et al. Neurologic complications in long-standing nephropathic cystinosis. Arch Neurol. 1989;46(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  742. Chik CL, Friedman A, Merriam GR, Gahl WA. Pituitary-testicular function in nephropathic cystinosis. Ann Intern Med. 1993;119(7 Pt 1):568–75.

    Article  CAS  PubMed  Google Scholar 

  743. Wong VG, Lietman PS, Seegmiller JE. Alterations of pigment epithelium in cystinosis. Arch Ophthalmol. 1967;77(3):361–9.

    Article  CAS  PubMed  Google Scholar 

  744. Tsilou ET, Rubin BI, Reed G, et al. Nephropathic cystinosis: posterior segment manifestations and effects of cysteamine therapy. Ophthalmology. 2006;113(6):1002–9.

    Article  PubMed  Google Scholar 

  745. Gahl WA, Reed GF, Thoene JG, et al. Cysteamine therapy for children with nephropathic cystinosis. N Engl J Med. 1987;316(16):971–7.

    Article  CAS  PubMed  Google Scholar 

  746. Kaiser-Kupfer MI, Gazzo MA, Datiles MB, Caruso RC, Kuehl EM, Gahl WA. A randomized placebo-controlled trial of cysteamine eye drops in nephropathic cystinosis. Arch Ophthalmol. 1990;108(5):689–93.

    Article  CAS  PubMed  Google Scholar 

  747. Gahl WA, Kuehl EM, Iwata F, Lindblad A, Kaiser-Kupfer MI. Corneal crystals in nephropathic cystinosis: natural history and treatment with cysteamine eyedrops. Mol Genet Metab. 2000;71(1–2):100–20.

    Article  CAS  PubMed  Google Scholar 

  748. Tsilou E, Zhou M, Gahl W, Sieving PC, Chan CC. Ophthalmic manifestations and histopathology of infantile nephropathic cystinosis: report of a case and review of the literature. Surv Ophthalmol. 2007;52(1):97–105.

    Article  PubMed  PubMed Central  Google Scholar 

  749. Jones NP, Postlethwaite RJ, Noble JL. Clearance of corneal crystals in nephropathic cystinosis by topical cysteamine 0.5 %. Br J Ophthalmol. 1991;75(5):311–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  750. Verheijen FW, Verbeek E, Aula N, et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet. 1999;23(4):462–5.

    Article  CAS  PubMed  Google Scholar 

  751. Aula P, Autio S, Raivio KO, et al. “Salla disease”: a new lysosomal storage disorder. Arch Neurol. 1979;36(2):88–94.

    Article  CAS  PubMed  Google Scholar 

  752. Aula N, Salomaki P, Timonen R, et al. The spectrum of SLC17A5-gene mutations resulting in free sialic acid-storage diseases indicates some genotype-phenotype correlation. Am J Hum Genet. 2000;67(4):832–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  753. Lemyre E, Russo P, Melancon SB, Gagne R, Potier M, Lambert M. Clinical spectrum of infantile free sialic acid storage disease. Am J Med Genet. 1999;82(5):385–91.

    Article  CAS  PubMed  Google Scholar 

  754. Haataja L, Parkkola R, Sonninen P, et al. Phenotypic variation and magnetic resonance imaging (MRI) in Salla disease, a free sialic acid storage disorder. Neuropediatrics. 1994;25(5):238–44.

    Article  CAS  PubMed  Google Scholar 

  755. Mancini GM, Hu P, Verheijen FW, et al. Salla disease variant in a Dutch patient. Potential value of polymorphonuclear leucocytes for heterozygote detection. Eur J Pediatr. 1992;151(8):590–5.

    Article  CAS  PubMed  Google Scholar 

  756. Montreuil J, Biserte G, Strecker G, Spik G, Fontaine G, Farriaux JP. Description of a new type of melituria, called sialuria. Clin Chim Acta. 1968;21(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  757. Kamerling JP, Strecker G, Farriaux JP, Dorland L, Haverkamp J, Vliegenthart JF. 2-Acetamidoglucal, a new metabolite isolated from the urine of a patient with sialuria. Biochim Biophys Acta. 1979;583(3):403–8.

    Article  CAS  PubMed  Google Scholar 

  758. Tay CH. Ichthyosiform erythroderma, hair shaft abnormalities, and mental and growth retardation. A new recessive disorder. Arch Dermatol. 1971;104(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  759. Stefanini M, Vermeulen W, Weeda G, et al. A new nucleotide-excision-repair gene associated with the disorder trichothiodystrophy. Am J Hum Genet. 1993;53(4):817–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  760. Liang C, Kraemer KH, Morris A, et al. Characterization of tiger-tail banding and hair shaft abnormalities in trichothiodystrophy. J Am Acad Dermatol. 2005;52(2):224–32.

    Article  PubMed  Google Scholar 

  761. Liang C, Morris A, Schlucker S, et al. Structural and molecular hair abnormalities in trichothiodystrophy. J Invest Dermatol. 2006;126(10):2210–6.

    Article  CAS  PubMed  Google Scholar 

  762. Faghri S, Tamura D, Kraemer KH, Digiovanna JJ. Trichothiodystrophy: a systematic review of 112 published cases characterises a wide spectrum of clinical manifestations. J Med Genet. 2008;45(10):609–21.

    Google Scholar 

  763. Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience. 2007;145(4):1388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  764. Brooks BP, Thompson AH, Clayton JA, et al. Ocular manifestations of trichothiodystrophy. Ophthalmology. 2011;118(12):2335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  765. Itin PH, Sarasin A, Pittelkow MR. Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol. 2001;44(6):891–920; quiz 921–894.

    Article  CAS  PubMed  Google Scholar 

  766. Sass JO, Skladal D, Zelger B, Romani N, Utermann B. Trichothiodystrophy: quantification of cysteine in human hair and nails by application of sodium azide-dependent oxidation to cysteic acid. Arch Dermatol Res. 2004;296(4):188–91.

    CAS  PubMed  Google Scholar 

  767. Levin AV, Wilson T, editors. Hospital for Sick Children’s atlas of pediatric ophthalmology and strabismus. Philadelphia: Lippincott Williams and Wilkins; 2007. ISBN 9780781743099.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Ganesh MD, MRCOphth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganesh, A., Al-Murshedi, F., Al-Zuhaibi, S., Al-Thihli, K. (2017). Ocular Manifestations of Inborn Errors of Metabolism. In: Levin, A., Enzenauer, R. (eds) The Eye in Pediatric Systemic Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-18389-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18389-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18388-6

  • Online ISBN: 978-3-319-18389-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics