Skip to main content

Printed Anisotropic Molecular Alignments

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

  • 2137 Accesses

Abstract

The fabrication of ordered organic molecular layers is of fundamental interest in many opto-electronic applications. Needless to say, the performance of liquid crystal displays, organic light emitting devices, organic field effect transistors and organic photovoltaic cells all depends on achieving a required degree of molecular alignment . To date, several processes have been developed to achieve the alignments, including the rubbing, Langmuir-Blodgett, alignment transcription, flow coating, gravure coating, and slit coating methods. In this chapter, these fabrication methods will be introduced and discussed and future technologies will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Lueder, Liquid Crystal Displays (John Wiley & Sons, Chichester, 2001)

    Google Scholar 

  2. D.-K. Yang, S.-T. Wu, Fundamentals of Liquid Crystals (John Wiley & Sons, Chichester, 2006)

    Google Scholar 

  3. T. Uchida, H. Seki, Surface alignment of liquid crystals, in Liquid Crystals-Applications and Uses, vol. 3, ed. by B. Bahadur (World Scientific, 1990)

    Google Scholar 

  4. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, London, 2005)

    Google Scholar 

  5. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007)

    Article  Google Scholar 

  6. H. Ishii, K. Kudo, T. Nakayama, N. Ueno (eds.), Electronic Processes in Organic Electronics (Springer, Japan, 2015)

    Google Scholar 

  7. C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002)

    Article  Google Scholar 

  8. K. Suganuma. Introduction to Printed Electronics, Springer, 2014

    Google Scholar 

  9. C. Mauguin, Sur les cristaux liquides de Lehmann. Bull. Soc. fr. Miner. 34, 71–76 (1911)

    Google Scholar 

  10. J.M. Geary, J.W. Goodby, A.R. Kmetz, J.S. Patel, The mechanism of polymer alignment of liquid crystal materials. J. Appl. Phys. 62, 4100–4108 (1987)

    Article  ADS  Google Scholar 

  11. H. Kikuchi, J.A. Logan, D.Y. Yoon, Study of local stress, morphology, and liquid crystal alignment on buffed polyimide surfaces. J. Appl. Phys. 79, 6811–6817 (1996)

    Article  ADS  Google Scholar 

  12. I. Hirosawa, Method of characterizing rubbed polyimide film for liquid crystal display devices using reflection ellipsometry. Jpn. J. Appl. Phys. 35, 5873–5875 (1996)

    Article  ADS  Google Scholar 

  13. Y. Nishikata, A. Morikawa, Y. Takiguchi, A. Kanamoto, M. Suzuki, M. Kakimoto, Y. Imai, Orientation of polymer chain of polyimide LB films, and alignment of liquid crystals on the LB films. Nippon Kagaku Kaishi 11, 2174–2179 (1987), Electrooptic bistability and threshold characteristics of ferroelectric liquid crystal cell possessing polyimide Langmuir-Blodgett film as an aligning layer. Jpn. J. Appl. Phys. 27, L1163–L1164 (1988)

    Google Scholar 

  14. M. Sugi, N. Minari, K. Ikegami, S. Kuroda, K. Saito, M. Saito, Vertical dipping method as a means of controlling the in-plane molecular orientation in Langmuir-Blodgett films. Thin Solid Films 178, 157–164 (1989)

    Article  ADS  Google Scholar 

  15. O. Yaroshchuk, Y. Reznikov, Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem. 22, 286–300 (2012)

    Article  Google Scholar 

  16. N.A. Clark, Surface memory effects in liquid crystals: influence of surface composition. Phys. Rev. Lett. 55, 292–295 (1985)

    Article  ADS  Google Scholar 

  17. Y. Ouchi, M.B. Feller, T. Moses, Y.R. Shen, Surface memory effect at the liquid-crystal-polymer interface. Phys. Rev. Lett. 68, 3040–3043 (1992)

    Article  ADS  Google Scholar 

  18. B.O. Myrvold, A weak surface memory effect in liquid crystal cells with rubbed polyimide layers. Liq. Cryst. 18, 287–290 (1995)

    Article  Google Scholar 

  19. T. Shioda, Y. Okada, D.-H. Chung, Y. Takanishi, K. Ishikawa, B. Park, H. Takezoe, Liquid crystals align liquid crystals. Jpn. J. Appl. Phys. 41, L266–L268 (2002)

    Article  ADS  Google Scholar 

  20. K. Sakamoto, J. Ueno, K. Bulgarevich, K. Miki, Anisotropic charge transport and contact resistance of 6,13-bis(triisopropylsilylethynyl) pentacene field-effect transistors fabricated by a modified flow-coating method. Appl. Phys. Lett. 100, 123301 (2012)

    Article  ADS  Google Scholar 

  21. A. Tracz, J.K. Jeszka, M.D. Watson, W. Pisula, K. Müllen, T. Pakula, Uniaxial alignment of the columnar super-structure of a hexa (alkyl) hexa-peri-hexabenzocoronene on untreated glass by simple solution processing. J. Am. Chem. Soc. 125, 1682–1683 (2003)

    Article  Google Scholar 

  22. W.H. Lee, D.H. Kim, Y. Jang, J.H. Cho, M. Hwang, Y.D. Park, Y.H. Kim, J.I. Han, K. Cho, Solution-processable pentacene microcrystal arrays for high performance organic field-effect transistors. Appl. Phys. Lett. 90, 132106 (2007)

    Article  ADS  Google Scholar 

  23. R.L. Headrick, S. Wo, F. Sansoz, J.E. Anthony, Anisotropic mobility in large grain size solution processed organic semiconductor thin films. Appl. Phys. Lett. 92, 063302 (2008)

    Article  ADS  Google Scholar 

  24. H.A. Becerril, M.E. Roberts, Z. Liu, J. Locklin, Z. Bao, High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv. Mater. 20, 2588–2594 (2008)

    Article  Google Scholar 

  25. T. Uemura, Y. Hirose, M. Uno, K. Takimiya, J. Takeya, Very high mobility in solution-processed organic thin-film transistors of highly ordered [1]benzothieno[3,2-b]benzothiophene derivatives. Appl. Phys. Exp. 2, 111501 (2009)

    Article  ADS  Google Scholar 

  26. C.W. Sele, B.K.C. Kjellander, B. Niesen, M.J. Thornton, J.B.P.H. van der Putten, K. Myny, H.J. Wondergem, A. Moser, R. Resel, A.J.J.M. van Breemen, N. van Aerle, P. Heremans, J.E. Anthony, G.H. Gelinck, Controlled deposition of highly ordered soluble acene thin films: effect of morphology and crystal orientation on transistor performance. Adv. Mater. 21, 4926–4931 (2009)

    Article  Google Scholar 

  27. M.J. Kim, H.W. Heo, Y.K. Suh, C.K. Song, Morphology control of TIPS-pentacene grains with inert gas injection and effects on the performance of OTFTs. Org. Electron. 12, 1170–1176 (2011)

    Article  Google Scholar 

  28. Y. Toko, B.Y. Zhang, T. Sugiyama, K. Katoh, T. Akahane, Characteristics of liquid crystal display fabricated by alignment transcription method. Mol. Cryst. Liq. Cryst. 304, 107–112 (1997)

    Article  Google Scholar 

  29. K. Sueoka, H. Nakamura, Y. Taira, Improving the moving-image quality of TFT-LCDs, Digest of SID Symposium, pp. 203–206 (1997)

    Google Scholar 

  30. S.G. Kim, S.M. Kim, Y.S. Kim, H.K. Lee, S.H. Lee, G.-D. Lee, J.-J. Lyu, K.H. Kim, Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen. Appl. Phys. Lett. 90, 261910 (2007)

    Article  ADS  Google Scholar 

  31. Y. Momoi, M. Kwak, D. Choi, Y. Choi, K. Jeong, T.i Koda, O. Haba, K. Yonetake. Polyimide-free LCD by dissolving dendrimers. J. SID 20(9), 486–492 (2012)

    Google Scholar 

  32. J.C. Meredith, A.P. Smith, A. Karim, E.J. Amis, Combinatorial materials science for polymer thin-film dewetting. Macromolecules 33, 9747–9756 (2000)

    Article  ADS  Google Scholar 

  33. M. Kimura, Japan Patent Unexam. Publ. No.2009-175247

    Google Scholar 

  34. M. Kimura, Progress of rubbing and non-rubbing techniques, in Proceedings of the IMID’10, pp. 185–186 (2010)

    Google Scholar 

  35. S.H. Lee, S.M. Kim, S.-T. Wu, Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer. J. SID 17, 551–559 (2009)

    Google Scholar 

  36. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1987)

    Google Scholar 

  37. M. Kimura, K. Honda, S. Yodogawa, K. Ohtsuka, T.N. Oo, K. Miyashita, H. Hirata, T. Akahane, Flexible LCDs fabricated with a slit coater: not requiring an alignment film. J. SID 20, 633–639 (2012)

    Google Scholar 

  38. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, New York, 1980)

    Google Scholar 

  39. H. Sato, K. Miyashita, M. Kimura, T. Akahane Study of liquid crystal alignment formed using slit coater. Jpn J. Appl. Phys. 50, 01BC16 (2011)

    Google Scholar 

  40. A.S. Sonin, N.A. Churochkina, Liquid crystals stabilized by polymer networks. Polym. Sci. A. 52, 463 (2010)

    Article  Google Scholar 

  41. K. Ohtsuka, Y. Nagataki, K. Goda, T.N. Oo, K. Miyashita, H. Hirata, M. Kimura, T. Akahane, Study of liquid crystal display fabricated using slit coater under two ultraviolet irradiation conditions. Jpn. J. Appl. Phys. 52, 05DB04 (2013)

    Google Scholar 

  42. Y. Nagataki, T.N. Oo, T. Yamamoto, K. Miyashita, H. Hirata, M. Kimura, T. Akahane, Study of electro-optical properties of liquid crystal/reactive mesogen-coated liquid crystal display fabricated by slit coater. Liq. Cryst. 41, 667–672 (2013)

    Article  Google Scholar 

  43. T.J. Chen, K.L. Chu, Pretilt angle control for single-cellgap transflective liquid crystal cells. Appl. Phys. Lett. 92, 091102 (2008)

    Article  ADS  Google Scholar 

  44. B.Y. Liu, L.J. Chen, Role of surface hydrophobicity in pretilt angle control of polymer-stabilized liquid crystal alignment systems. J. Phys. Chem. C 117, 13474–13478 (2013)

    Article  Google Scholar 

  45. A. Goetz, M.K. Memmer, M. Bremer, A. Taugerbeck, K. Tarumi, D. Pauluth. Advanced liquid crystal materials for fast switching display modes, in Proceedings of the IDW’08, LCT6—3 (2008)

    Google Scholar 

  46. A. Goetz, A. Taugerbeck, G. Bernatz, K. Tarumi, Advanced liquid-crystal materials for the polymersustained vertically aligned (PS-VA) mode. Digest SID Symp. 41, 718–720 (2010)

    Article  Google Scholar 

  47. E.Y. Jeon, K.H. Kim, J.H. Lee, T.H. Yoon, Single cellgap transflective liquid crystal device created by controlling the pretilt angle using a liquid crystalline reactive monomer. Opt. Express 19, 25617–25622 (2011)

    Article  ADS  Google Scholar 

  48. R.A.M. Hikmet, C.D. Witz, Gel layers for inducing adjustable pretilt angles in liquid crystal systems. J. Appl. Phys. 70, 1265–1269 (1991)

    Article  ADS  Google Scholar 

  49. D.K. Yang. Polymer-stabilized liquid crystal displays, in Progress in Liquid Crystal Science and Technology in Honor of Shunsuke Kobayashi’s 80th Birthday, ed. by H.S. Kwok, S. Naemura, H.L. Ong (World Scientific, 2013), pp. 597–628

    Google Scholar 

  50. A. Koike, M. Nishizawa, H. Tokunaga, J. Akiyama, T. Tsujimura, K. Hayashi, Novel non-alkaline glass substrate with ultra-low thermal shrinkage for higher resolution active matrix displays, in Proceedings of the IDW’13, FMC4-2 (2013)

    Google Scholar 

  51. N. Kooy, K. Mohamed, L.T. Pin, O.S. Guan, A review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 9, 320–332 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munehiro Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kimura, M. (2015). Printed Anisotropic Molecular Alignments. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_13

Download citation

Publish with us

Policies and ethics