Skip to main content

Interfacial Interactions in 1D and 2D Nanostructure-Based Material Systems

  • Chapter
  • First Online:
Anisotropic Nanomaterials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

One-dimensional (1D) and two-dimensional (2D) nanostructures possess many extraordinary structural and physical/chemical properties, and are pursued for a number of innovative devices and material systems in nano science and engineering, such as nano electronics, sensors and composites. Due to their large surface-to-volume ratios, the interface in these nanostructure-based material systems plays important roles in their functionalities and performance. In this chapter, we review the fundamental knowledge of interfacial interactions and their roles in the structural and physical properties, and applications of 1D and 2D nanostructures, and survey the recent advances on the characterization of interfacial interactions in 1D and 2D nanostructure-based material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)

    ADS  Google Scholar 

  2. C.H. Ke, H.D. Espinosa, Feedback controlled nanocantilever device. Appl. Phys. Lett. 85, 681–683 (2004)

    ADS  Google Scholar 

  3. C.H. Ke, H.D. Espinosa, In situ electron microscopy electromechanical characterization of a bistable NEMS device. Small 2, 1484–1489 (2006)

    Google Scholar 

  4. J.E. Jang, S.N. Cha, Y. Choi, G.A.J. Amaratunga, D.J. Kang, D.G. Hasko, J.E. Jung, J.M. Kim, Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl. Phys. Lett. 87, 163114 (2005)

    ADS  Google Scholar 

  5. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    ADS  Google Scholar 

  6. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron-nitride nanotubes. Science 269, 966–967 (1995)

    ADS  Google Scholar 

  7. A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron-nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)

    ADS  Google Scholar 

  8. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992)

    ADS  Google Scholar 

  9. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997)

    ADS  Google Scholar 

  10. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    ADS  Google Scholar 

  11. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-scale synthesis of aligned carbon nanotubes. Science 274, 1701–1703 (1996)

    ADS  Google Scholar 

  12. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79, 3155–3157 (2001)

    ADS  Google Scholar 

  13. C.-Y. Su, Z.-Y. Juang, K.-F. Chen, B.-M. Cheng, F.-R. Chen, K.-C. Leou, C.-H. Tsai, Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD eethods. J. Phys. Chem. C 113, 14681–14688 (2009)

    Google Scholar 

  14. O.R. Lourie, C.R. Jones, B.M. Bartlett, P.C. Gibbons, R.S. Ruoff, W.E. Buhro, CVD growth of boron nitride nanotubes. Chem. Mater. 12, 1808–1810 (2000)

    Google Scholar 

  15. D. Golberg, Y. Bando, M. Eremets, K. Takemura, K. Kurashima, H. Yusa, Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 69, 2045–2047 (1996)

    ADS  Google Scholar 

  16. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 72, 1966–1968 (1998)

    ADS  Google Scholar 

  17. T. Laude, Y. Matsui, A. Marraud, B. Jouffrey, Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 76, 3239–3241 (2000)

    ADS  Google Scholar 

  18. R. Arenal, O. Stephan, J.-L. Cochon, A. Loiseau, Root-growth mechanism for single-walled boron nitride nanotubes in laser vaporization technique. J. Am. Chem. Soc. 129, 16183–16189 (2007)

    Google Scholar 

  19. M.W. Smith, K.C. Jordan, C. Park, J.-W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20, 505604 (2009)

    Google Scholar 

  20. M. Zheng, X. Chen, I.-T. Bae, C. Ke, C. Park, M.W. Smith, K. Jordan, Radial mechanical properties of single-walled boron nitride nanotubes. Small 8, 116–121 (2012)

    Google Scholar 

  21. M. Zheng, C. Ke, I.-T. Bae, C. Park, M.W. Smith, K. Jordan, Radial elasticity of multi-walled boron nitride nanotubes. Nanotechnology 23, 095703 (2012)

    ADS  Google Scholar 

  22. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)

    Google Scholar 

  23. M.S. Dresselhaus, Carbon Nanotubes (Springer, Berlin, 2001)

    Google Scholar 

  24. N.G. Chopra, A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998)

    ADS  Google Scholar 

  25. E. Pop, D. Mann, Q. Wang, K. Goodson, H.J. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)

    ADS  Google Scholar 

  26. Y. Xiao, X.H. Yan, J.X. Cao, J.W. Ding, Y.L. Mao, J. Xiang, Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B 69, 205415 (2004)

    ADS  Google Scholar 

  27. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. EPL Europhys. Lett. 28, 335 (1994)

    ADS  Google Scholar 

  28. C.H. Lee, M. Xie, V. Kayastha, J. Wang, Y.K. Yap, Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 22, 1782–1787 (2010)

    Google Scholar 

  29. C.H. Lee, J. Wang, V.K. Kayatsha, J.Y. Huang, Y.K. Yap, Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19, 455605 (2008)

    ADS  Google Scholar 

  30. Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004)

    ADS  Google Scholar 

  31. D. Golberg, Y. Bando, K. Kurashima, T. Sato, Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater. 44, 1561–1565 (2001)

    Google Scholar 

  32. H.G. Craighead, Nanoelectromechanical systems. Science 290, 1532–1535 (2000)

    ADS  Google Scholar 

  33. B. Mahar, C. Laslau, R. Yip, Y. Sun, Development of carbon nanotube-based sensors: a review. Sens. J. IEEE 7, 266–284 (2007)

    Google Scholar 

  34. J.N. Coleman, U. Khan, Y.K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706 (2006)

    Google Scholar 

  35. Z. Liu, S. Tabakman, K. Welsher, H.J. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009)

    Google Scholar 

  36. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, D. Golberg, Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 19, 1857–1862 (2009)

    Google Scholar 

  37. Y. Li, P.S. Dorozhkin, Y. Bando, D. Golberg, Controllable modification of SiC nanowires encapsulated in BN nanotubes. Adv. Mater. 17, 545–549 (2005)

    Google Scholar 

  38. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    ADS  Google Scholar 

  39. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    ADS  Google Scholar 

  40. M. Yankowitz, J. Xue, D. Cormode, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B.J. LeRoy, Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)

    Google Scholar 

  41. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005)

    ADS  Google Scholar 

  42. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    ADS  Google Scholar 

  43. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    ADS  Google Scholar 

  44. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  45. D. Li, R.B. Kaner, Graphene-based materials. Science 320, 1170–1171 (2008)

    Google Scholar 

  46. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    ADS  Google Scholar 

  47. D. Teweldebrhan, A.A. Balandin, Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 94, 013101 (2009)

    ADS  Google Scholar 

  48. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    ADS  Google Scholar 

  49. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2009)

    Google Scholar 

  50. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)

    ADS  Google Scholar 

  51. G.D. Lee, C.Z. Wang, E. Yoon, N.M. Hwang, K.M. Ho, The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube. Appl. Phys. Lett. 92, 043104 (2008)

    ADS  Google Scholar 

  52. C. Józsa, M. Popinciuc, N. Tombros, H.T. Jonkman, B.J. van Wees, Electronic spin drift in graphene field-effect transistors. Phys. Rev. Lett. 100, 236603 (2008)

    ADS  Google Scholar 

  53. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007)

    ADS  Google Scholar 

  54. X. Wang, L. Zhi, K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)

    ADS  Google Scholar 

  55. J. Zhou, P. Fei, Y.F. Gao, Y.D. Gu, J. Liu, G. Bao, Z.L. Wang, Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 8, 2725–2730 (2008)

    ADS  Google Scholar 

  56. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008)

    Google Scholar 

  57. J.B. Wu, H.A. Becerril, Z.N. Bao, Z.F. Liu, Y.S. Chen, P. Peumans, Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008)

    ADS  Google Scholar 

  58. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)

    ADS  Google Scholar 

  59. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based electrochemical supercapacitors. J. Chem. Sci. 120, 9–13 (2008)

    Google Scholar 

  60. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Thermal expansion of graphene composites. Macromolecules 42, 5251–5255 (2009)

    ADS  Google Scholar 

  61. S. Ganguli, A.K. Roy, D.P. Anderson, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46, 806–817 (2008)

    Google Scholar 

  62. Y. Sanchez-Paisal, D. Sanchez-Portal, N. Garmendia, R. Munoz, I. Obieta, J. Arbiol, L. Calvo-Barrio, A. Ayuela, Zr-metal adhesion on graphenic nanostructures. Appl. Phys. Lett. 93, 053101 (2008)

    ADS  Google Scholar 

  63. S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films. Langmuir 25, 11078–11081 (2009)

    Google Scholar 

  64. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos. Part -Appl. Sci. Manuf. 38, 1675–1682 (2007)

    Google Scholar 

  65. D. Cho, S. Lee, G. Yang, H. Fukushima, L.T. Drzal, Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol. Mater. Eng. 290, 179–187 (2005)

    Google Scholar 

  66. S.H. Xie, Y.Y. Liu, J.Y. Li, Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl. Phys. Lett. 92, 243121 (2008)

    ADS  Google Scholar 

  67. N. Mohanty, V. Berry, Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008)

    ADS  Google Scholar 

  68. M. Xu, D. Fujita, N. Hanagata, Perspectives and challenges of emerging single-molecule DNA sequencing technologies. Small 5, 2638–2649 (2009)

    Google Scholar 

  69. W. Hu, C. Peng, W. Luo, M. Lv, X. Li, D. Li, Q. Huang, C. Fan, Graphene-based antibacterial paper. ACS Nano 4, 4317–4323 (2010)

    Google Scholar 

  70. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    ADS  Google Scholar 

  71. J. Hass, W.A. de Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter. 20, 323202 (2008)

    Google Scholar 

  72. K.V. Emtsev, F. Speck, T. Seyller, L. Ley, J.D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008)

    ADS  Google Scholar 

  73. P.W. Sutter, J.-I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008)

    ADS  Google Scholar 

  74. A.L. Vázquez de Parga, F. Calleja, B. Borca, M.C.G. Passeggi, J.J. Hinarejos, F. Guinea, R. Miranda, Periodically rippled graphene: growth and spatially resolved electronic structure. Phys. Rev. Lett. 100, 056807 (2008)

    ADS  Google Scholar 

  75. W. Zhou, Y. Huang, B. Liu, J. Wu, K.C. Hwang, B.Q. Wei, Adhesion between carbon nanotubes and substrate: mimicking the gecko foothair. NANO 2, 175–179 (2007)

    Google Scholar 

  76. L. Zhi, K. Müllen, A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472–1484 (2008)

    Google Scholar 

  77. U. Stöberl, U. Wurstbauer, W. Wegscheider, D. Weiss, J. Eroms, Morphology and flexibility of graphene and few-layer graphene on various substrates. Appl. Phys. Lett. 93, 051906 (2008)

    ADS  Google Scholar 

  78. Q. Shao, G. Liu, D. Teweldebrhan, A.A. Balandin, High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 92, 202108 (2008)

    ADS  Google Scholar 

  79. D. Dietzel, T. Mönninghoff, L. Jansen, H. Fuchs, C. Ritter, U.D. Schwarz, A. Schirmeisen, Interfacial friction obtained by lateral manipulation of nanoparticles using atomic force microscopy techniques. J. Appl. Phys. 102, 084306 (2007)

    ADS  Google Scholar 

  80. H.E. Jeong, K.Y. Suh, Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives. Nano Today 4, 335–346 (2009)

    Google Scholar 

  81. Y. Kashiwase, T. Ikeda, T. Oya, T. Ogino, Manipulation and soldering of carbon nanotubes using atomic force microscope. Appl. Surf. Sci. 254, 7897–7900 (2008)

    ADS  Google Scholar 

  82. G. Wang, X. Gou, J. Horvat, J. Park, Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112, 15220–15225 (2008)

    Google Scholar 

  83. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3, 327–331 (2008)

    ADS  Google Scholar 

  84. B.Z. Jang, A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J. Mater. Sci. 43, 5092–5101 (2008)

    ADS  Google Scholar 

  85. H.C. Schniepp, K.N. Kudin, J.-L. Li, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano 2, 2577–2584 (2008)

    Google Scholar 

  86. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)

    Google Scholar 

  87. C. Xu, X. Wu, J. Zhu, X. Wang, Synthesis of amphiphilic graphite oxide. Carbon 46, 386–389 (2008)

    Google Scholar 

  88. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, J.N. Coleman, Liquid Phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611–3620 (2009)

    Google Scholar 

  89. S. Vadukumpully, J. Paul, S. Valiyaveettil, Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 47, 3288–3294 (2009)

    Google Scholar 

  90. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    ADS  Google Scholar 

  91. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    ADS  Google Scholar 

  92. J.-H. Lee, E.K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J.Y. Lim, S.-H. Choi, S.J. Ahn, J.R. Ahn, M.-H. Park, C.-W. Yang, B.L. Choi, S.-W. Hwang, D. Whang, Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181), 286–289 (2014)

    ADS  Google Scholar 

  93. L. Jiao, X. Xian, Z. Wu, J. Zhang, Z. Liu, Selective positioning and integration of individual single-walled carbon nanotubes. Nano Lett. 9, 205–209 (2009)

    ADS  Google Scholar 

  94. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    ADS  Google Scholar 

  95. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    ADS  Google Scholar 

  96. J.-L. Tsai, S.-H. Tzeng, Y.-J. Tzou, Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics. Int. J. Solids Struct. 47, 503–509 (2010)

    MATH  Google Scholar 

  97. T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Liu, C.S. Jayanthi, M. Tang, S.-Y. Wu, Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000)

    ADS  Google Scholar 

  98. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen, Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003)

    ADS  Google Scholar 

  99. C. González, J. Ortega, F. Flores, D. Martínez-Martín, J. Gómez-Herrero, Initial stages of the contact between a metallic tip and carbon nanotubes. Phys. Rev. Lett. 102, 106801 (2009)

    ADS  Google Scholar 

  100. F. Ding, P. Larsson, J.A. Larsson, R. Ahuja, H. Duan, A. Rosén, K. Bolton, The importance of strong carbon–metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 8, 463–468 (2008)

    ADS  Google Scholar 

  101. M.A. Ribas, F. Ding, P.B. Balbuena, B.I. Yakobson, Nanotube nucleation versus carbon-catalyst adhesion–probed by molecular dynamics simulations. J. Chem. Phys. 131, 224501 (2009)

    ADS  Google Scholar 

  102. P. Larsson, J.A. Larsson, R. Ahuja, F. Ding, B.I. Yakobson, H. Duan, A. Rosén, K. Bolton, Calculating carbon nanotube–catalyst adhesion strengths. Phys. Rev. B 75, 115419 (2007)

    ADS  Google Scholar 

  103. L.A. Girifalco, M. Hodak, R.S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62, 13104–13110 (2000)

    ADS  Google Scholar 

  104. J.P. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    ADS  Google Scholar 

  105. C. Ke, M. Zheng, I.-T. Bae, G. Zhou, Adhesion-driven buckling of single-walled carbon nanotube bundles. J. Appl. Phys. 107, 104305 (2010)

    ADS  Google Scholar 

  106. J.H. Hsu, S.H. Chang, Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy. Appl. Surf. Sci. 256, 1769–1773 (2010)

    ADS  Google Scholar 

  107. B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, H.D. Espinosa, Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat. Nanotechnol. 3, 626–631 (2008)

    Google Scholar 

  108. A. Kis, G. Csanyi, J.P. Salvetat, T.N. Lee, E. Couteau, A.J. Kulik, W. Benoit, J. Brugger, L. Forro, Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 3, 153–157 (2004)

    ADS  Google Scholar 

  109. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, S. Zhu, Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 271, 395–400 (1999)

    Google Scholar 

  110. R. Haggenmueller, F. Du, J.E. Fischer, K.I. Winey, Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites. Polymer 47, 2381–2388 (2006)

    Google Scholar 

  111. W. Leelapornpisit, M.-T. Ton-That, F. Perrin-Sarazin, K.C. Cole, J. Denault, B. Simard, Effect of carbon nanotubes on the crystallization and properties of polypropylene. J. Polym. Sci., Part B: Polym. Phys. 43, 2445–2453 (2005)

    ADS  Google Scholar 

  112. H. Jiang, X.Q. Feng, Y. Huang, K.C. Hwang, P.D. Wu, Defect nucleation in carbon nanotubes under tension and torsion: Stone-Wales transformation. Comput. Methods Appl. Mech. Eng. 193, 3419–3429 (2004)

    MATH  ADS  Google Scholar 

  113. G.G. Samsonidze, G.G. Samsonidze, B.I. Yakobson, Energetics of Stone-Wales defects in deformations of monoatomic hexagonal layers. Comput. Mater. Sci. 23, 62–72 (2002)

    Google Scholar 

  114. K.I. Tserpes, P. Papanikos, The effect of Stone-Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Compos. Struct. 79, 581–589 (2007)

    Google Scholar 

  115. H.S. Wong, C. Durkan, N. Chandrasekhar, Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy. ACS Nano 3, 3455–3462 (2009)

    Google Scholar 

  116. J.E. Lennard-Jones, Perturbation problems in quantum mechanics. Proc. R. Soc. A 129, 598–615 (1930)

    MATH  ADS  Google Scholar 

  117. T. Tang, A. Jagota, C.-Y. Hui, Adhesion between single-walled carbon nanotubes. J. Appl. Phys. 97, 074304 (2005)

    ADS  Google Scholar 

  118. M.J. López, A. Rubio, J.A. Alonso, L.-C. Qin, S. Iijima, Novel polygonized single-wall carbon nanotube bundles. Phys. Rev. Lett. 86, 3056–3059 (2001)

    ADS  Google Scholar 

  119. M.J. Buehler, Y. Kong, H. Gao, Y. Huang, Self-folding and unfolding of carbon nanotubes. J. Eng. Mater. Technol. 128, 3–10 (2006)

    Google Scholar 

  120. B. Chen, M. Gao, J.M. Zuo, S. Qu, B. Liu, Y. Huang, Binding energy of parallel carbon nanotubes. Appl. Phys. Lett. 83, 3570–3571 (2003)

    ADS  Google Scholar 

  121. Z. Liu, K. Suenaga, P.J.F. Harris, S. Iijima, Open and closed edges of graphene layers. Phys. Rev. Lett. 102, 015501 (2009)

    ADS  Google Scholar 

  122. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    ADS  Google Scholar 

  123. X. Chen, L. Zhang, Y. Zhao, X. Wang, C. Ke, Graphene folding on flat substrates. J. Appl. Phys. 116, 164301 (2014)

    ADS  Google Scholar 

  124. D.-B. Zhang, E. Akatyeva, T. Dumitrică, Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett. 106, 255503 (2011)

    ADS  Google Scholar 

  125. N.G. Chopra, L.X. Benedict, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Fully collapsed carbon nanotubes. Nature 377, 135–138 (1995)

    ADS  Google Scholar 

  126. C. Ke, M. Zheng, G. Zhou, W. Cui, N. Pugno, R.N. Miles, Mechanical peeling of free-standing single-walled carbon nanotube bundles. Small 6, 438–445 (2010)

    Google Scholar 

  127. D.-M. Tang, D.G. Kvashnin, S. Najmaei, Y. Bando, K. Kimoto, P. Koskinen, P.M. Ajayan, B.I. Yakobson, P.B. Sorokin, J. Lou, D. Golberg, Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 5, 3631 (2014)

    Google Scholar 

  128. T. Hertel, R.E. Walkup, P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 58, 13870–13873 (1998)

    ADS  Google Scholar 

  129. Y. Zhao, X. Chen, C. Park, C.C. Fay, S. Stupkiewicz, C. Ke, Mechanical deformations of boron nitride nanotubes in crossed junctions. J. Appl. Phys. 115, 164305 (2014)

    ADS  Google Scholar 

  130. O. Gülseren, T. Yildirim, S. Ciraci, Ç. Kılıç, Reversible band-gap engineering in carbon nanotubes by radial deformation. Phys. Rev. B 65, 155410 (2002)

    ADS  Google Scholar 

  131. B. Shan, G.W. Lakatos, S. Peng, K. Cho, First-principles study of band-gap change in deformed nanotubes. Appl. Phys. Lett. 87, 173109 (2005)

    ADS  Google Scholar 

  132. A.P.M. Barboza, A.P. Gomes, B.S. Archanjo, P.T. Araujo, A. Jorio, A.S. Ferlauto, M.S.C. Mazzoni, H. Chacham, B.R.A. Neves, Deformation induced semiconductor-metal transition in single wall carbon nanotubes probed by electric force microscopy. Phys. Rev. Lett. 100, 256804 (2008)

    ADS  Google Scholar 

  133. Y.-H. Kim, K.J. Chang, S.G. Louie, Electronic structure of radially deformed BN and BC3 nanotubes. Phys. Rev. B 63, 205408 (2001)

    ADS  Google Scholar 

  134. H.W.C. Postma, A. Sellmeijer, C. Dekker, Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope. Adv. Mater. 12, 1299–1302 (2000)

    Google Scholar 

  135. M. Zheng, L.-F. Zou, H. Wang, C. Park, C. Ke, Engineering radial deformations in single-walled carbon and boron nitride nanotubes using ultrathin nanomembranes. ACS Nano 6, 1814–1822 (2012)

    Google Scholar 

  136. M. Zheng, L. Zou, H. Wang, C. Park, C. Ke, Quantifying the transverse deformability of double-walled carbon and boron nitride nanotubes using an ultrathin nanomembrane covering scheme. J. Appl. Phys. 112, 104318 (2012)

    ADS  Google Scholar 

  137. S.P. Koenig, N.G. Boddeti, M.L. Dunn, J.S. Bunch, Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)

    ADS  Google Scholar 

  138. Z. Zong, C.-L. Chen, M.R. Dokmeci, K. Wan, Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J. Appl. Phys. 107, 026104 (2010)

    ADS  Google Scholar 

  139. S. Akita, H. Nishijima, T. Kishida, Y. Nakayama, Influence of force acting on side face of carbon nanotube in atomic force microscopy. Jpn. J. Appl. Phys. 39, 3724 (2000)

    ADS  Google Scholar 

  140. M.C. Strus, L. Zalamea, A. Raman, R.B. Pipes, C.V. Nguyen, E.A. Stach, Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett. 8, 544–550 (2008)

    ADS  Google Scholar 

  141. M.C. Strus, C.I. Cano, R.B. Pipes, C.V. Nguyen, A. Raman, Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Compos. Sci. Technol. 69, 1580–1586 (2009)

    Google Scholar 

  142. M. Zheng, C. Ke, Elastic deformation of carbon-nanotube nanorings. Small 6, 1647–1655 (2010)

    Google Scholar 

  143. M.R. Roenbeck, X. Wei, A.M. Beese, M. Naraghi, A. Furmanchuk, J.T. Paci, G.C. Schatz, H.D. Espinosa, In situ scanning electron microscope peeling to quantify surface energy between multiwalled carbon nanotubes and graphene. ACS Nano 8, 124–138 (2014)

    Google Scholar 

  144. T. Yoon, W.C. Shin, T.Y. Kim, J.H. Mun, T.-S. Kim, B.J. Cho, Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett. 12, 1448–1452 (2012)

    ADS  Google Scholar 

  145. J.W. Cook, S. Edge, D.E. Packham, The adhesion of natural rubber to steel and the use of the peel test to study its nature. Int. J. Adhes. Adhes. 17, 333–337 (1997)

    Google Scholar 

  146. A. Bagchi, A.G. Evans, The mechanics and physics of thin film decohesion and its measurement. Interface Sci. 3, 169–193 (1996)

    Google Scholar 

  147. M. Ishikawa, R. Harada, N. Sasaki, K. Miura, Adhesion and peeling forces of carbon nanotubes on a substrate. Phys. Rev. B 80, 193406 (2009)

    ADS  Google Scholar 

  148. X. Li, W. Chen, Q. Zhan, L. Dai, L. Sowards, M. Pender, R.R. Naik, Direct measurements of interactions between polypeptides and carbon nanotubes. J. Phys. Chem. B 110, 12621–12625 (2006)

    Google Scholar 

  149. M. Zheng, C. Ke, Mechanical deformation of carbon nanotube nano-rings on flat substrate. J. Appl. Phys. 109, 074304 (2011)

    ADS  Google Scholar 

  150. B.A. Newcomb, H.G. Chae, P.V. Gulgunje, K. Gupta, Y. Liu, D.E. Tsentalovich, M. Pasquali, S. Kumar, Stress transfer in polyacrylonitrile/carbon nanotube composite fibers. Polymer 55, 2734–2743 (2014)

    Google Scholar 

  151. D. Roy, S. Bhattacharyya, A. Rachamim, A. Plati, M.-L. Saboungi, Measurement of interfacial shear strength in single wall carbon nanotubes reinforced composite using Raman spectroscopy. J. Appl. Phys. 107, 043501–043501–6 (2010)

    Google Scholar 

  152. T. Ozkan, Q. Chen, I. Chasiotis, Interfacial strength and fracture energy of individual carbon nanofibers in epoxy matrix as a function of surface conditions. Compos. Sci. Technol. 72, 965–975 (2012)

    Google Scholar 

  153. M.P. Manoharan, A. Sharma, A.V. Desai, M.A. Haque, C.E. Bakis, K.W. Wang, The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20, 295701 (2009)

    Google Scholar 

  154. T. Tsuda, T. Ogasawara, F. Deng, N. Takeda, Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Compos. Sci. Technol. 71, 1295–1300 (2011)

    Google Scholar 

  155. C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81, 3873–3875 (2002)

    ADS  Google Scholar 

  156. A.H. Barber, S.R. Cohen, H.D. Wagner, Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82, 4140 (2003)

    ADS  Google Scholar 

  157. A.H. Barber, S.R. Cohen, S. Kenig, H.D. Wagner, Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos. Sci. Technol. 64, 2283–2289 (2004)

    Google Scholar 

  158. A.H. Barber, S.R. Cohen, A. Eitan, L.S. Schadler, H.D. Wagner, Fracture transitions at a carbon-nanotube/polymer interface. Adv. Mater. 18, 83–87 (2006)

    Google Scholar 

  159. Y. Ganesan, C. Peng, Y. Lu, P.E. Loya, P. Moloney, E. Barrera, B.I. Yakobson, J.M. Tour, R. Ballarini, J. Lou, Interface toughness of carbon nanotube reinforced epoxy composites. ACS Appl. Mater. Interf. 3, 129–134 (2011)

    Google Scholar 

  160. Y. Ganesan, H. Salahshoor, C. Peng, V. Khabashesku, J. Zhang, A. Cate, N. Rahbar, J. Lou, Fracture toughness of the sidewall fluorinated carbon nanotube-epoxy interface. J. Appl. Phys. 115, 224305 (2014)

    ADS  Google Scholar 

  161. P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12, 750–753 (2000)

    Google Scholar 

  162. S.C. Chowdhury, T. Okabe, Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Compos. Part -Appl. Sci. Manuf. 38, 747–754 (2007)

    Google Scholar 

  163. C.Y. Wei, Adhesion and reinforcement in carbon nanotube polymer composite. Appl. Phys. Lett. 88, 093108 (2006)

    ADS  Google Scholar 

  164. J.Q. Liu, T. Xiao, K. Liao, P. Wu, Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations. Nanotechnology 18, 165701 (2007)

    ADS  Google Scholar 

  165. M. Wong, M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao, Physical interactions at carbon nanotube-polymer interface. Polymer 44, 7757–7764 (2003)

    Google Scholar 

  166. J. Gou, B. Minaie, B. Wang, Z. Liang, C. Zhang, Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31, 225–236 (2004)

    Google Scholar 

  167. K. Liao, S. Li, Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys. Lett. 79, 4225–4227 (2001)

    ADS  Google Scholar 

  168. X. Chen, M. Zheng, C. Park, C. Ke, Direct measurements of the mechanical strength of carbon nanotube–poly(methyl methacrylate) interfaces. Small 9, 3345–3351 (2013)

    Google Scholar 

  169. X. Chen, L. Zhang, M. Zheng, C. Park, X. Wang, C. Ke, Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy. Carbon 82, 214–228 (2015)

    Google Scholar 

  170. G. Gonçalves, P.A.A.P. Marques, A. Barros-Timmons, I. Bdkin, M.K. Singh, N. Emami, J. Grácio, Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J. Mater. Chem. 20, 9927 (2010)

    Google Scholar 

  171. B. Das, K.E. Prasad, U. Ramamurty, C.N.R. Rao, Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology 20, 125705 (2009)

    ADS  Google Scholar 

  172. L. Gong, I.A. Kinloch, R.J. Young, I. Riaz, R. Jalil, K.S. Novoselov, Interfacial stress transfer in a graphene monolayer nanocomposite. Adv. Mater. 22, 2694–2697 (2010)

    Google Scholar 

  173. H.L. Cox, The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)

    ADS  Google Scholar 

  174. A.P. Awasthi, D.C. Lagoudas, D.C. Hammerand, Modeling of graphene-polymer interfacial mechanical behavior using molecular dynamics. Model. Simul. Mater. Sci. Eng. 17, 015002 (2009)

    ADS  Google Scholar 

  175. H. Salahshoor, N. Rahbar, Nano-scale fracture toughness and behavior of graphene/epoxy interface. J. Appl. Phys. 112, 023510 (2012)

    ADS  Google Scholar 

  176. C. Lv, Q. Xue, D. Xia, M. Ma, J. Xie, H. Chen, Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J. Phys. Chem. C 114, 6588–6594 (2010)

    Google Scholar 

  177. C.-H. Ke, M. Zheng, in Simulations in Nanobiotechnology, ed. by K. Eom. Nanoscale Adhesion Interactions in 1D and 2D Nanostructure-Based Material Systems (Elsevier, 2011)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the financial support from State University of New York at Binghamton, American Chemical Society-Petroleum Research Fund, and US Air Force Office of Scientific Research. A special thanks is due to Dr. M. Zheng, co-author of a previous version of the chapter [177]. We freely used material from the previous version and thank him for his contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Ke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ke, C., Chen, X. (2015). Interfacial Interactions in 1D and 2D Nanostructure-Based Material Systems. In: Li, Q. (eds) Anisotropic Nanomaterials. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-18293-3_10

Download citation

Publish with us

Policies and ethics