Skip to main content

On the Influence of Node Centralities on Graph Edit Distance for Graph Classification

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Abstract

Classical graph approaches for pattern recognition applications rely on computing distances between graphs in the graph domain. That is, the distance between two graphs is obtained by directly optimizing some objective function which consider node and edge attributes. Bipartite Graph Matching was first published in a journal in 2009 and new versions have appeared to speed up its runtime such as the Fast Bipartite Graph Matching. This algorithm is based on defining a cost matrix between all nodes of both graphs and solving the node correspondence through a linear assignment method. To construct the matrix, several local structures can be defined from the simplest one (only the node) to the most complex (a whole clique or eigenvector structure). In this paper, we propose five different options and we show that the type of local structure and the distance defined between these structures is relevant for graph classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanfeliu, A., Alquézar, R., Andrade, J., Climent, J., Serratosa, F., Vergés, J.: Graph-based Representations and Techniques for Image Processing and Image Analysis. Pattern Recognition 35(3), 639–650 (2002)

    Article  MATH  Google Scholar 

  2. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph Matching In Pattern Recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  3. Vento, M.: A One Hour Trip in the World of Graphs, Looking at the Papers of the Last Ten Years. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 1–10. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Hancock, E.R., Wilson, R.C.: Pattern analysis with graphs: Parallel work at Bern and York. Pattern Recognition Letters 33(7), 833–841 (2012)

    Article  Google Scholar 

  5. Serratosa, F., Cortés, X., Solé-Ribalta, A.: Component Retrieval based on a Database of Graphs for Hand-Written Electronic-Scheme Digitalisation. Expert Systems With Applications, ESWA 40, 2493–2502 (2013)

    Article  Google Scholar 

  6. Solé, A., Serratosa, F., Sanfeliu, A.: On the Graph Edit Distance cost: Properties and Applications. International Journal of Pattern Recognition and Artificial Intelligence 26(5) (2012)

    Google Scholar 

  7. Serratosa, F., Alquézar, R., Sanfeliu, A.: Estimating the Joint Probability Distribution of Random Vertices and Arcs by Means of Second-Order Random Graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 252–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Ferrer, M., Valveny, E., Serratosa, F.: Median graphs: A genetic approach based on new theoretical properties. Pattern Recognition 42(9), 2003–2012 (2009)

    Article  MATH  Google Scholar 

  9. Ferrer, M., Valveny, E., Serratosa, F.: Median graph: A new exact algorithm using a distance based on the maximum common subgraph. Pattern Recognition Letters 30(5), 579–588 (2009)

    Article  Google Scholar 

  10. Serratosa, F., Alquézar, R., Sanfeliu, A.: Estimating the Joint Probability Distribution of Random Vertices and Arcs by Means of Second-Order Random Graphs. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 252–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Serratosa, F., Sanfeliu, A.: Function-Described Graphs applied to 3D object recognition. In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1310, pp. 701–708. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  12. Serratosa, F.: Fast Computation of Bipartite Graph Matching. Pattern Recognition Letters 45, 244–250 (2014)

    Article  Google Scholar 

  13. Serratosa, F.: Speeding up Fast Bipartite Graph Matching trough a new cost matrix, International Journal of Pattern Recognition and Artificial Intelligence 29(2) (2015)

    Google Scholar 

  14. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)

    Article  Google Scholar 

  15. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the Society for Industrial & Applied Mathematics 5, 32–38 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jonker, R., Volgenant, T.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cortés, X., Serratosa, F.: An Interactive Method for the Image Alignment problem based on Partially Supervised Correspondence. Expert Systems With Applications 42(1), 179–192 (2015)

    Article  Google Scholar 

  18. Serratosa, F., Cortés, X.: Interactive Graph-Matching using Active Query Strategies. Pattern Recognition 48, 1360–1369 (2015)

    Article  Google Scholar 

  19. Riesen, K., Bunke, H., Fischer, A.: Improving Graph Edit Distance Approximation by Centrality Measures. In: International Congress on Pattern Recognition (2014)

    Google Scholar 

  20. Cortés, X., Serratosa, F.: Learning Graph-Matching Edit-Costs based on the Optimality of the Oracle’s Node Correspondences. Pattern Recognition Letters (2015)

    Google Scholar 

  21. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady, Cybernetics and Control Theory 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  22. Peris, G., Marzal, A.: Fast Cyclic Edit Distance Computation with Weighted Edit Costs in Classification. In: ICPR 2002, vol. 4, pp. 184–187 (2002)

    Google Scholar 

  23. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Cortés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cortés, X., Serratosa, F., Moreno-García, C.F. (2015). On the Influence of Node Centralities on Graph Edit Distance for Graph Classification. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics