Skip to main content

Vibro-Injection Pile Installation in Sand: Part II—Numerical and Experimental Investigation

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 77))

Abstract

In Part 1 of this series of papers a macroscopic two-equation (two-field) reduced model for the mechanics of the multi-material flow associated with vibro-injection pile installation in saturated sand was derived. Here we employ this model to develop a so-called multi-material arbitrary Lagrangian-Eulerian (MMALE) method. MMALE avoids the disadvantages of the classical approaches in computational continuum mechanics concerning large deformations and evolving material interfaces. The numerical implementation of this method will be outlined, and then the experimental investigations will be presented that have been carried out in order to validate the computational model. Among these investigations, small-scale model tests in chambers with observing window have been designed step-by-step to reveal penetration and vibro-injection pile installation phenomena.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  Google Scholar 

  2. Ahn, H.T., Shashkov, M.: Multi-material interface reconstruction on generalized polyhedral meshes. J. Comput. Phys. 226, 2096–2132 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984)

    Google Scholar 

  4. Askes, H., Bodé, L., Sluys, L.J.: ALE analysis of localization in wave propagation problems. Mech. Cohesive-Frictional Mater. 3, 105–125 (1998)

    Article  Google Scholar 

  5. Aubram, D.: Differential Geometry Applied to Continuum Mechanics. In: Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. vol. 44. Shaker, Aachen (2009)

    Google Scholar 

  6. Aubram, D.: An Arbitrary Lagrangian-Eulerian Method for Penetration into Sand at Finite Deformation. In: Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. vol. 62. Shaker, Aachen (2013)

    Google Scholar 

  7. Aubram, D.: Optimization-based smoothing algorithm for triangle meshes over arbitrarily shaped domains. (2014). arXiv:1410.5977 [cs.NA]

  8. Aubram, D., Rackwitz, F., Savidis, S.A.: An ALE finite element method for cohesionless soil at large strains: computational aspects and applications. In: Benz, T., Nordal, S. (eds.) Proceedings 7th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE), pp. 245–250. CRC Press, Boca Raton (2010)

    Google Scholar 

  9. Barth, T., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 1, Chap. 15. Wiley, Chichester (2004)

    Google Scholar 

  10. Belytschko, T., Liu, W.K., Moran, D.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    Google Scholar 

  11. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Meth. Appl. Mech. Eng. 99, 235–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Benson, D.J.: A multi-material Eulerian formulation for the efficient solution of impact and penetration problems. Comput. Mech. 15, 558–571 (1995)

    Article  MATH  Google Scholar 

  13. Benson, D.J.: A mixture theory for contact in multi-material Eulerian formulations. Comput. Meth. Appl. Mech. Eng. 140, 59–86 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Benson, D.J.: An implicit multi-material Eulerian formulation. Int. J. Numer. Meth. Eng. 48, 475–499 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev. 55(2), 151–165 (2002)

    Article  Google Scholar 

  16. Beyer, O.: Erweiterung und Optimierung eines Modellversuchsstandes für die Simulation der Rüttelinjektionspfahlherstellung. Bachelor’s thesis, Technische Universität Berlin, Germany (2012) (unpublished; in German)

    Google Scholar 

  17. Büchler, M.: Qualitative Untersuchung bodenmechanischer Phänomene während der Herstellung von Rüttelinjektionspfählen mittels Particle Image Velocimetry. Bachelor’s thesis, Technische Universität Berlin, Germany (2013) (unpublished; in German)

    Google Scholar 

  18. Carow, Ch.: Das MINI-Element für Fluid-Kornstruktur-gekoppelte Problemstellungen. Master’s Thesis, Technische Universität Berlin, Germany (2012) (unpublished; in German)

    Google Scholar 

  19. Colella, P., Glaz, H.M., Ferguson, R.E.: Multifluid algorithms for Eulerian finite difference methods (1997) (unpublished manuscript)

    Google Scholar 

  20. DeBar, R.B.: Fundamentals of the KRAKEN Code. Technical Report UCID-17366, Lawrence Livermore Laboratory, Livermore, USA (1974)

    Google Scholar 

  21. DIN EN ISO 14688–1. Geotechnische Erkundung und Untersuchung—Benennung, Beschreibung und Klassifizierung von Boden—Teil 1: Benennung und Beschreibung. Beuth Verlag, Berlin (2003) (German Code)

    Google Scholar 

  22. Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Technical report LA-UR-05-7571, Los Alamos National Laboratory, New Mexico, USA (2005)

    Google Scholar 

  23. Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227, 5361–5384 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Freßmann, D., Wriggers, P.: Advection approaches for single-and multi-material arbitrary Lagrangian-Eulerian finite element procedures. Comput. Mech. 39, 153–190 (2007)

    Article  MATH  Google Scholar 

  25. Glimm, J., Isaacson, E., Marchesin, D., McBryan, O.: Front tracking for hyperbolic systems. Computat. Mech. 2, 91–119 (1981)

    MATH  MathSciNet  Google Scholar 

  26. Glimm, J., Grove, J.W., Li, X.L., Shyue, K.-M., Zeng, Y., Zhang, Q.: Three-dimensional front tracking. SIAM J. Sci. Comput. 19(3), 703–727 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49(3), 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, New York (1998) (Reprint; first published 1950)

    Google Scholar 

  29. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  30. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Article  MATH  Google Scholar 

  31. Hughes, T.J.R., Winget, J.: Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int. J. Numer. Methods Eng. 15(12), 1862–1867 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Hughes, T.J.R.: Numerical implementation of constitutive models: rate-independent deviatoric plasticity. In: Nemat-Nasser, S., Asaro, R.J., Hegemier, G.A. (eds.) Theoretical Foundation for Large-Scale Computations for Nonlinear Material Behavior, pp. 29–63. Martinus Nijhoff Publishers, Dordrecht (1984)

    Google Scholar 

  33. Hyman, J.M.: Numerical methods for tracking interfaces. Physica D 12, 396–407 (1984)

    Article  MATH  Google Scholar 

  34. Kirchner, J.: Bestimmung der Schnittpolygone für die Interface-Rekonstruktion in unstrukturierten Dreiecksnetzen. Seminar Paper, Technische Universität Berlin, Germany (2014) (unpublished; in German)

    Google Scholar 

  35. LeVeque, R.J.: Finite volume methods for hyperbolic problems, 3rd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  36. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)

    MATH  Google Scholar 

  37. Luttwak, G., Rabie, R.L.: The multi material arbitrary Lagrangian Eulerian code MMALE and its application to some problems of penetration and impact. Technical report LA-UR-85-2311, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (1985)

    Google Scholar 

  38. McGlaun, J.M., Thompson, S.L.: CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)

    Article  Google Scholar 

  39. Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Article  MATH  Google Scholar 

  40. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Mater. 2, 279–299 (1997)

    Article  Google Scholar 

  41. Noack, D.: Anwendung der digitalen Bildkorrelation auf Modellversuche zur Herstellung von Rüttelinjektionspfählen. Diploma thesis, Technische Universität Berlin, Germany (2011) (unpublished; in German)

    Google Scholar 

  42. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169, 463–502 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  44. Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Meth. Appl. Mech. Eng. 187, 591–619 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pilliod, J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199, 465–502 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141, 112–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  47. Rodríguez-Ferran, A., Casadei, F., Huerta, A.: ALE stress update for transient and quasistatic processes. Int. J. Numer. Meth. Eng. 43, 241–262 (1998)

    Article  MATH  Google Scholar 

  48. Rudman, M.: Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Meth. Fluids 24(7), 671–691 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  49. Savidis, S.A., Aubram, D., Rackwitz, F.: Arbitrary Lagrangian-Eulerian finite element formulation for geotechnical construction processes. J. Theor. Appl. Mech. 38(1–2), 165–194 (2008)

    MathSciNet  Google Scholar 

  50. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech. 31, 567–603 (1999)

    Article  MathSciNet  Google Scholar 

  51. Schulz, T.: Konzeption und Realisierung eines kleinmaßstäblichen Modellversuchsstandes für die Herstellung von Rüttelinjektionspfählen. Diploma thesis, Technische Universität Berlin, Germany (2011) (unpublished; in German)

    Google Scholar 

  52. Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Science. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  53. Simo, J.C., Meschke, G.: A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials. Comput. Mech. 11, 253–278 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  54. Truesdell, C., Noll, W.: In: Antman, S.S. (ed.) The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  55. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Janz, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708–759 (2001)

    Article  MATH  Google Scholar 

  56. Vitali, E., Benson, D.J.: An extended finite element formulation for contact in multi-material arbitrary Lagrangian-Eulerian calculations. Int. J. Numer. Meth. Eng. 67, 1420–1444 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  57. von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)

    Article  Google Scholar 

  58. White, D.J., Take, W.A.: GeoPIV: Particle image velocimetry (PIV) software for use in geotechnical testing. Technical report CUED/D-SOILS/TR322, Geotechnical and Environmental Research Group, University of Cambridge, UK (2002)

    Google Scholar 

  59. White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Géotechnique 53(7), 619–631 (2003)

    Article  Google Scholar 

  60. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  61. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic Press, London (1982)

    Google Scholar 

  62. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics: With Special Reference to Earthquake Engineering. Wiley, Chichester (1999)

    MATH  Google Scholar 

  63. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 3, 5th edn. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

Download references

Acknowledgments

The presented work was carried out under the financial support from the German Research Foundation (DFG; grants SA 310/26-1 and SA 310/26-2) as part of the DFG Research Unit FOR 1136, which is gratefully acknowledged. We thank our colleagues in this research unit for several fruitful discussions about our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Savidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savidis, S.A., Aubram, D., Rackwitz, F. (2015). Vibro-Injection Pile Installation in Sand: Part II—Numerical and Experimental Investigation. In: Triantafyllidis, T. (eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-18170-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18170-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18169-1

  • Online ISBN: 978-3-319-18170-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics