Skip to main content

Normal and Abnormal Neurodevelopmental and Behavioral Outcomes of Very Low-Birth Weight (VLBW) Infants

  • Living reference work entry
  • First Online:
  • 320 Accesses

Abstract

Advances in perinatal and neonatal management of very low-birth weight (VLBW) infants (<1500 g) have resulted in increased survival of fragile “high-risk” infants, including those with extremely low birth weight (<1000 g). These high-risk preterm survivors have increased post-discharge morbidities including neurologic/neurosensory, cognitive, visual motor/fine motor, speech and language, motor function/coordination, functional skills for daily living, and behavior sequelae. Most tertiary care programs in the United States and all neonatal training programs have a structured follow-up program whose primary areas of responsibility are surveillance and research. Multiple assessment tools are used by these follow-up programs to identify the neurodevelopmental sequelae of preterm birth. Assessments in the first 3 years of life reliably identify major neurosensory morbidities and major neurodevelopmental sequelae. The majority of major abnormalities can be identified by 18–24 months of age. These early childhood assessments are often the primary outcome for clinical trials and also facilitate referral to appropriate intervention services. Although there are data demonstrating neurodevelopmental recovery with increasing age, there is also evidence of sustained adverse outcomes of executive functions, atypical behavior, and psychological problems into school age and adolescence. Assessments at school age rather than early childhood are felt to provide a more reliable prediction of long-term outcomes.

This is a preview of subscription content, log in via an institution.

Abbreviations

ABR:

Auditory brainstem response

ASD:

Autism spectrum disorder

Bayley II:

Bayley Scales of Infant Development II

BDI:

Battelle Developmental Inventory

Beery VMI:

Beery Developmental Test of Visual Motor Integration 4th Ed

BPD:

Bronchopulmonary dysplasia

BSID-III:

Bayley Scales of Infant Development III

CBCL:

Child Behavior Checklist

CP:

Cerebral palsy

DCD:

Developmental coordination disorder

ELBW:

Extremely low birth weight

ELM2:

Early Language Milestone Scale2

ESP:

Early Screening Profiles

GMFCS:

Gross Motor Function Classification System

HL:

Hearing loss

IVH:

Intraventricular hemorrhage

MABC:

Movement Assessment Battery for Children

M-CHAT:

Modified Checklist for Autism in Toddlers

MDI:

Mental Developmental Index

NDI:

Neurodevelopmental impairment

NICHD:

National Institute of Child Health and Human Development

NICU:

Neonatal intensive care unit

PDDST II:

Pervasive Developmental Disorders Screening Test II

PDI:

Psychomotor Developmental Index

PDMS:

Peabody Developmental Motor Scales

PLS:

Preschool Language Score

PPVT-R:

Peabody Picture Vocabulary Test

PVL:

Periventricular leukomalacia

SB-4:

Stanford-Binet Intelligence Scale, 4th edition

SICDR:

Sequenced Inventory of Communication Development Revised

VABS:

Vineland Adaptive Behavior Scale

VLBW:

Very low birth weight

WeeFIM:

Functional Independence Measure for Children

WISC-III:

Wechsler Intelligence Scale for Children

WPPSI:

Wechsler Preschool and Primary Scales of Intelligence

References

  • Achenbach TM (1991a) Integrative guide for the 1991 CBCL/4-18 YSR and TRF profiles. University of Vermont, Department of Psychiatry, Burlington

    Google Scholar 

  • Achenbach T (1991b) Child behavior checklist. Department of Psychiatry, Burlington

    Google Scholar 

  • Adams-Chapman I (2006) Neurodevelopmental outcome of the late preterm infant. Clin Perinatol 33(4):947–964; abstract xi

    Article  PubMed  Google Scholar 

  • American Academy of Pediatrics. Committee on Fetus and Newborn (1995) The initiation or withdrawal of treatment for high-risk newborns. Pediatrics 96:362–363

    Google Scholar 

  • Amiel-Tison C (1987) Neuromotor status. In: Taeusch HW, Yogman MW (eds) Follow-up management of the high-risk infant. Little, Brown & Company, Boston

    Google Scholar 

  • Ananth CV, Gyamfi C, Jain L (2008) Characterizing risk profiles of infants who are delivered at late preterm gestations: does it matter? Am J Obstet Gynecol 199(4):329–331

    Article  PubMed  Google Scholar 

  • Ananth CV, Friedman AM, Gyamfi-Bannerman C (2013) Epidemiology of moderate preterm, late preterm and early term delivery. Clin Perinatol 40(4):601–610

    Article  PubMed  Google Scholar 

  • Anderson P, Doyle LW (2003) Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 289(24):3264–3272

    Article  PubMed  Google Scholar 

  • Anderson PJ, Doyle LW (2004) Executive functioning in school-aged children who were born very preterm or with extremely low birth weight in the 1990s. Pediatrics 114(1):50–57

    Article  PubMed  Google Scholar 

  • Anderson PJ, De Luca CR, Hutchinson E, Roberts G, Doyle LW (2010) Underestimation of developmental delay by the new Bayley-III scale. Arch Pediatr Adolesc Med 164(4):352–356

    Article  PubMed  Google Scholar 

  • Aylward GP (1992) The relationship between environmental risk and developmental outcome. J Dev Behav Pediatr 13(3):222–229

    Article  CAS  PubMed  Google Scholar 

  • Aylward GP (2002) Methodological issues in outcome studies of at-risk infants. J Pediatr Psychol 27(1):37–45

    Article  PubMed  Google Scholar 

  • Aylward GP, Hatcher RP, Stripp B, Gustafson NF, Leavitt LA (1985) Who goes and who stays: subject loss in a multicenter, longitudinal follow-up study. J Dev Behav Pediatr 6(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Ballard PL, Keller RL, Black DM, Durand DJ, Merrill JD, Eichenwald EC et al (2015) Inhaled nitric oxide increases urinary nitric oxide metabolites and cyclic guanosine monophosphate in premature infants: relationship to pulmonary outcome. Am J Perinatol 32(3):225–232

    PubMed  Google Scholar 

  • Barnett A, Henderson S, Sugden D (2007) The movement assessment battery for children-2. Pearson Assessment, London, United Kingdom

    Google Scholar 

  • Barrington KJ (2001) The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr 1(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrington KJ, Finer NN (2007) Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev 3:CD000509

    Google Scholar 

  • Bastek JA, Sammel MD, Pare E, Srinivas SK, Posencheg MA, Elovitz MA (2008) Adverse neonatal outcomes: examining the risks between preterm, late preterm, and term infants. Am J Obstet Gynecol 199(4):367 e361–368

    Article  Google Scholar 

  • Bayley N (1993) Bayley scales of infant development-II. Psychological Corporation, San Antonio

    Google Scholar 

  • Bayley N (2006) Bayley scales of infant and toddler development – third edition. Harcourt Assessment, San Antonio

    Google Scholar 

  • Beery K (1989) Developmental test of visual-motor integration, 3rd edn. Western Psychological Services, Los Angeles

    Google Scholar 

  • Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288(6):728–737

    Article  PubMed  Google Scholar 

  • Blakely ML, Lally KP, McDonald S, Brown RL, Barnhart DC, Ricketts RR et al (2005) Postoperative outcomes of extremely low birth-weight infants with necrotizing enterocolitis or isolated intestinal perforation: a prospective cohort study by the NICHD Neonatal Research Network. Ann Surg 241(6):984–989; discussion 989–994

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaymore-Bier J, Pezzullo J, Kim E, Oh W, Garcia-Coll C, Vohr BR (1994) Outcome of extremely low-birth-weight infants: 1980–1990. Acta Paediatr 83(12):1244–1248

    Article  CAS  PubMed  Google Scholar 

  • Botting N, Powls A, Cooke RW, Marlow N (1997) Attention deficit hyperactivity disorders and other psychiatric outcomes in very low birthweight children at 12 years. J Child Psychol Psychiatry 38(8):931–941

    Article  CAS  PubMed  Google Scholar 

  • Botting N, Powls A, Cooke RW, Marlow N (1998) Cognitive and educational outcome of very-low-birthweight children in early adolescence. Dev Med Child Neurol 40(10):652–660

    Article  CAS  PubMed  Google Scholar 

  • Bracewell M, Marlow N (2002) Patterns of motor disability in very preterm children. Ment Retard Dev Disabil Res Rev 8(4):241–248

    Article  PubMed  Google Scholar 

  • Breslau N, Chilcoat HD (2000) Psychiatric sequelae of low birth weight at 11 years of age. Biol Psychiatry 47(11):1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Breslau N, Johnson EO, Lucia VC (2001) Academic achievement of low birthweight children at age 11: the role of cognitive abilities at school entry. J Abnorm Child Psychol 29(4):273–279

    Article  CAS  PubMed  Google Scholar 

  • Briscoe J, Gathercole SE, Marlow N (1998) Short-term memory and language outcomes after extreme prematurity at birth. J Speech Lang Hear Res 41(3):654–666

    Article  CAS  PubMed  Google Scholar 

  • Broyles RS, Tyson JE, Heyne ET, Heyne RJ, Hickman JF, Swint M et al (2000) Comprehensive follow-up care and life-threatening illnesses among high-risk infants: a randomized controlled trial. JAMA 284(16):2070–2076

    Article  CAS  PubMed  Google Scholar 

  • Bruininks R (1978) Bruininks-Oseretsky test of motor proficiency. American Guidance Service, Circle Pines

    Google Scholar 

  • Chyi LJ, Lee HC, Hintz SR, Gould JB, Sutcliffe TL (2008) School outcomes of late preterm infants: special needs and challenges for infants born at 32 to 36 weeks gestation. J Pediatr 153(1):25–31

    Article  PubMed  Google Scholar 

  • Colarusso R, Hammill DD (2003) Motor-free visual perception test manual. Western Psychological Services, Los Angeles

    Google Scholar 

  • Conners CK (1996) Connors parent rating scales revised. Psychological Corporation, San Antonio

    Google Scholar 

  • Cooke RW, Foulder-Hughes L, Newsham D, Clarke D (2004) Ophthalmic impairment at 7 years of age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 89(3):F249–F253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coplan J (1993) Early language milestone scale-second edition. Pro-ed, Austin

    Google Scholar 

  • Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES (2012) Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 345:e7976

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowley P, Chalmers I, Keirse MJ (1990) The effects of corticosteroid administration before preterm delivery: an overview of the evidence from controlled trials. Br J Obstet Gynaecol 97(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Davidoff MJ, Dias T, Damus K, Russell R, Bettegowda VR, Dolan S et al (2006) Changes in the gestational age distribution among U.S. singleton births: impact on rates of late preterm birth, 1992 to 2002. Semin Perinatol 30(1):8–15

    Article  PubMed  Google Scholar 

  • De Vries LS, Van Haastert IL, Rademaker KJ, Koopman C, Groenendaal F (2004a) Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J Pediatr 144(6):815–820

    Article  PubMed  Google Scholar 

  • de Vries LS, Gunardi H, Barth PG, Bok LA, Verboon-Maciolek MA, Groenendaal F (2004b) The spectrum of cranial ultrasound and magnetic resonance imaging abnormalities in congenital cytomegalovirus infection. Neuropediatrics 35(2):113–119

    Article  PubMed  Google Scholar 

  • Doyle LW, Anderson PJ (2005) Improved neurosensory outcome at 8 years of age of extremely low birthweight children born in Victoria over three distinct eras. Arch Dis Child Fetal Neonatal Ed 90(6):F484–F488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drillien CM (1972) Abnormal neurologic signs in the first year of life in low-birthweight infants: possible prognostic significance. Dev Med Child Neurol 14(5):575–584

    Article  CAS  PubMed  Google Scholar 

  • Duffner PK, Granger C, Lyon N, Niewczyk P, Barczykowski A, Bauer S et al (2012) Developmental and functional outcomes in children with a positive newborn screen for Krabbe disease: a pilot study of a phone-based interview surveillance technique. J Pediatr 161(2):258–263, e251

    Article  PubMed  Google Scholar 

  • Dunn LM, Dunn L (1997) Peabody picture vocabulary test, 3rd edn. American Guidance Service, Circle Pines

    Google Scholar 

  • Edwards J, Berube M, Erlandson K, Haug S, Johnstone H, Meagher M et al (2011) Developmental coordination disorder in school-aged children born very preterm and/or at very low birth weight: a systematic review. J Dev Behav Pediatr 32(9):678–687

    Article  PubMed  Google Scholar 

  • Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK (2006) Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117(4):1253–1261

    Article  PubMed  Google Scholar 

  • Elliott CD (1990) Differential ability scales. Introductory and technical handbook. The Psychological Corp., New York

    Google Scholar 

  • El-Metwally D, Vohr B, Tucker R (2000) Survival and neonatal morbidity at the limits of viability in the mid 1990s: 22 to 25 weeks. J Pediatr 137(5):616–622

    Article  CAS  PubMed  Google Scholar 

  • Emsley HC, Wardle SP, Sims DG, Chiswick ML, D’ Souza SW (1998) Increased survival and deteriorating developmental outcome in 23 to 25 week old gestation infants, 1990-4 compared with 1984-9. Arch Dis Child Fetal Neonatal Ed 78(2):F99–F104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engle WA, Tomashek KM, Wallman C (2007) “Late-preterm” infants: a population at risk. Pediatrics 120(6):1390–1401

    Article  PubMed  Google Scholar 

  • Fanaroff AA, Hack M, Walsh MC (2003) The NICHD neonatal research network: changes in practice and outcomes during the first 15 years. Semin Perinatol 27(4):281–287

    Article  PubMed  Google Scholar 

  • Farooqi A, Hagglof B, Sedin G, Gothefors L, Serenius F (2007) Mental health and social competencies of 10- to 12-year-old children born at 23 to 25 weeks of gestation in the 1990s: a Swedish national prospective follow-up study. Pediatrics 120(1):118–133

    Article  PubMed  Google Scholar 

  • Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR et al (2010) Early CPAP versus surfactant in extremely preterm infants. N Engl J Med 362(21):1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Folio MR, Fewell RR (1983) Peabody developmental motor scales and activity cards. Developmental Learning Materials Resource, Allen

    Google Scholar 

  • Foulder-Hughes LA, Cooke RW (2003) Motor, cognitive, and behavioural disorders in children born very preterm. Dev Med Child Neurol 45(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Gargus RA, Vohr BR, Tyson JE, High P, Higgins RD, Wrage LA et al (2009) Unimpaired outcomes for extremely low birth weight infants at 18 to 22 months. Pediatrics 124(1):112–121

    Article  PubMed  PubMed Central  Google Scholar 

  • Gianarris WJ, Golden CJ, Greene L (2001) The Conners’ parent rating scales: a critical review of the literature. Clin Psychol Rev 21(7):1061–1093

    Article  CAS  PubMed  Google Scholar 

  • Goyen TA, Lui K, Woods R (1998) Visual-motor, visual-perceptual, and fine motor outcomes in very-low-birthweight children at 5 years. Dev Med Child Neurol 40(2):76–81

    Article  CAS  PubMed  Google Scholar 

  • Granger CV, Seltzer GB, Fishbein CF (eds) (1987) Primary care of the functionally disabled: assessment and management. Lippincott, Philadelphia

    Google Scholar 

  • Granger CV, Hamilton BB, Linacre JM, Heinemann AW, Wright BD (1993) Performance profiles of the functional independence measure. Am J Phys Med Rehabil 72(2):84–89

    Article  CAS  PubMed  Google Scholar 

  • Grunau RE, Whitfield MF, Fay TB (2004) Psychosocial and academic characteristics of extremely low birth weight (< or =800 g) adolescents who are free of major impairment compared with term-born control subjects. Pediatrics 114(6):e725–e732

    Article  PubMed  Google Scholar 

  • Hack M (2006) Young adult outcomes of very-low-birth-weight children. Semin Fetal Neonatal Med 11(2):127–137

    Article  PubMed  Google Scholar 

  • Hack M, Fanaroff AA (2000) Outcomes of children of extremely low birthweight and gestational age in the 1990s. Semin Neonatol 5(2):89–106

    Article  CAS  PubMed  Google Scholar 

  • Hack M, Friedman H, Fanaroff AA (1996) Outcomes of extremely low birth weight infants. Pediatrics 98(5):931–937

    CAS  PubMed  Google Scholar 

  • Hack M, Wilson-Costello D, Friedman H, Taylor GH, Schluchter M, Fanaroff AA (2000a) Neurodevelopment and predictors of outcomes of children with birth weights of less than 1000 g: 1992–1995. Arch Pediatr Adolesc Med 154(7):725–731

    Article  CAS  PubMed  Google Scholar 

  • Hack M, Taylor HG, Klein N, Mercuri-Minich N (2000b) Functional limitations and special health care needs of 10- to 14-year-old children weighing less than 750 grams at birth. Pediatrics 106(3):554–560

    Article  CAS  PubMed  Google Scholar 

  • Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N (2002) Outcomes in young adulthood for very-low-birth-weight infants. N Engl J Med 346(3):149–157

    Article  PubMed  Google Scholar 

  • Hack M, Youngstrom EA, Cartar L, Schluchter M, Taylor HG, Flannery D et al (2004) Behavioral outcomes and evidence of psychopathology among very low birth weight infants at age 20 years. Pediatrics 114(4):932–940

    Article  PubMed  Google Scholar 

  • Hack M, Taylor HG, Drotar D, Schluchter M, Cartar L, Wilson-Costello D et al (2005) Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics 116(2):333–341

    Article  PubMed  Google Scholar 

  • Haley SM, Coster WJ, Ludlow LH (1991) Pediatric functional outcome measures. Phys Med Rehabil Clin N Am 2:689–723

    Google Scholar 

  • Haley SM, Coster WJ, Ludlow LH et al (1992) Pediatric Evaluation of Disability Inventory (PEDI), version I, development, standardization and administration manual. New England Medical Center-PEDI Research Group, Boston

    Google Scholar 

  • Hall A, McLeod A, Counsell C, Thomson L, Mutch L (1995) School attainment, cognitive ability and motor function in a total Scottish very-low-birthweight population at eight years: a controlled study. Dev Med Child Neurol 37(12):1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Halsey CL, Collin MF, Anderson CL (1996) Extremely low-birth-weight children and their peers. A comparison of school-age outcomes. Arch Pediatr Adolesc Med 150(8):790–794

    Article  CAS  PubMed  Google Scholar 

  • Harrison P, Kaufman AS, Kaufman NL et al (1990) Early Screening Profiles (ESP). American Guidance Service

    Google Scholar 

  • Hendrick DL, Prather M, Tobin AR (1984) Sequenced Inventory of Communication Development (SICD)-revised edition. Pro-ed, Austin

    Google Scholar 

  • Herold B, Hohle B, Walch E, Weber T, Obladen M (2008) Impaired word stress pattern discrimination in very-low-birthweight infants during the first 6 months of life. Dev Med Child Neurol 50(9):678–683

    Article  PubMed  Google Scholar 

  • Hintz SR, Kendrick DE, Stoll BJ, Vohr BR, Fanaroff AA, Donovan EF et al (2005a) Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 115(3):696–703

    Article  PubMed  Google Scholar 

  • Hintz SR, Kendrick DE, Vohr BR, Poole WK, Higgins RD (2005b) Changes in neurodevelopmental outcomes at 18 to 22 months’ corrected age among infants of less than 25 weeks’ gestational age born in 1993–1999. Pediatrics 115(6):1645–1651

    Article  PubMed  Google Scholar 

  • Hintz SR, Poole WK, Wright LL, Fanaroff AA, Kendrick DE, Laptook AR et al (2005c) Changes in mortality and morbidities among infants born at less than 25 weeks during the post-surfactant era. Arch Dis Child Fetal Neonatal Ed 90(2):F128–F133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hintz SR, Kendrick DE, Wilson-Costello DE, Das A, Bell EF, Vohr BR et al (2011) Early-childhood neurodevelopmental outcomes are not improving for infants born at <25 weeks’ gestational age. Pediatrics 127(1):62–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA et al (2015) Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics 135(1):e32–e42

    Article  PubMed  PubMed Central  Google Scholar 

  • Horwood LJ, Mogridge N, Darlow BA (1998) Cognitive, educational, and behavioural outcomes at 7 to 8 years in a national very low birthweight cohort. Arch Dis Child Fetal Neonatal Ed 79(1):F12–F20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indredavik MS, Vik T, Heyerdahl S, Kulseng S, Fayers P, Brubakk AM (2004) Psychiatric symptoms and disorders in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed 89(5):F445–F450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ireton H (1992) Child development inventory. Behavior Science Systems, Minneapolis

    Google Scholar 

  • Jain S, Cheng J (2006) Emergency department visits and rehospitalizations in late preterm infants. Clin Perinatol 33(4):935–945; abstract xi

    Article  PubMed  Google Scholar 

  • Johnson S, Ring W, Anderson P, Marlow N (2005) Randomised trial of parental support for families with very preterm children: outcome at 5 years. Arch Dis Child 90(9):909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joint Committee on Infant Hearing (2007) Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 120:898–921

    Article  Google Scholar 

  • Khashu M, Narayanan M, Bhargava S, Osiovich H (2009) Perinatal outcomes associated with preterm birth at 33 to 36 weeks’ gestation: a population-based cohort study. Pediatrics 123(1):109–113

    Article  PubMed  Google Scholar 

  • Kinsey VE, Arnold HJ, Kalina RE, Stern L, Stahlman M, Odell G et al (1977) PaO2 levels and retrolental fibroplasia: a report of the cooperative study. Pediatrics 60(5):655–668

    CAS  PubMed  Google Scholar 

  • Klebanov PK, Brooks-Gunn J, McCormick MC (1994) Classroom behavior of very low birth weight elementary school children. Pediatrics 94(5):700–708

    CAS  PubMed  Google Scholar 

  • Kleinman JM, Robins DL, Ventola PE, Pandey J, Boorstein HC, Esser EL et al (2008) The modified checklist for autism in toddlers: a follow-up study investigating the early detection of autism spectrum disorders. J Autism Dev Disord 38(5):827–839

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolevzon A, Gross R, Reichenberg A (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 161(4):326–333

    Article  PubMed  Google Scholar 

  • Kumar P, Shankaran S, Ambalavanan N, Kendrick DE, Pappas A, Vohr BR et al (2013) Characteristics of extremely low-birth-weight infant survivors with unimpaired outcomes at 30 months of age. J Perinatol 33(10):800–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzniewicz MW, Parker SJ, Schnake-Mahl A, Escobar GJ (2013) Hospital readmissions and emergency department visits in moderate preterm, late preterm, and early term infants. Clin Perinatol 40(4):753–775

    Article  PubMed  Google Scholar 

  • Laptook AR, O’ Shea TM, Shankaran S, Bhaskar B (2005) Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: prevalence and antecedents. Pediatrics 115(3):673–680

    Article  PubMed  Google Scholar 

  • Larson SL, Vitali GJ (1988) Kindergarten Readiness Test (KRT). Slosson Educational Publication, East Aura

    Google Scholar 

  • Lefebvre F, Mazurier E, Tessier R (2005) Cognitive and educational outcomes in early adulthood for infants weighing 1000 grams or less at birth. Acta Paediatr 94(6):733–740

    Article  PubMed  Google Scholar 

  • Limperopoulos C, Bassan H, Sullivan NR, Soul JS, Robertson RL Jr, Moore M et al (2008) Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics 121(4):758–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindstrom K, Lindblad F, Hjern A (2009) Psychiatric morbidity in adolescents and young adults born preterm: a Swedish national cohort study. Pediatrics 123(1):e47–e53

    Article  PubMed  Google Scholar 

  • Litt J, Taylor HG, Klein N, Hack M (2005) Learning disabilities in children with very low birthweight: prevalence, neuropsychological correlates, and educational interventions. J Learn Disabil 38(2):130–141

    Article  PubMed  Google Scholar 

  • Lorenz JM, Wooliever DE, Jetton JR, Paneth N (1998) A quantitative review of mortality and developmental disability in extremely premature newborns. Arch Pediatr Adolesc Med 152(5):425–435

    Article  CAS  PubMed  Google Scholar 

  • Luu TM, Vohr BR, Schneider KC, Katz KH, Tucker R, Allan WC et al (2009a) Trajectories of receptive language development from 3 to 12 years of age for very preterm children. Pediatrics 124(1):333–341

    Article  PubMed  PubMed Central  Google Scholar 

  • Luu TM, Ment LR, Schneider KC, Katz KH, Allan WC, Vohr BR (2009b) Lasting effects of preterm birth and neonatal brain hemorrhage at 12 years of age. Pediatrics 123(3):1037–1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Luu TM, Vohr BR, Allan W, Schneider KC, Ment LR (2011a) Evidence for catch-up in cognition and receptive vocabulary among adolescents born very preterm. Pediatrics 128(2):313–322

    Article  PubMed  PubMed Central  Google Scholar 

  • Luu TM, Ment L, Allan W, Schneider K, Vohr BR (2011b) Executive and memory function in adolescents born very preterm. Pediatrics 127(3):e639–e646

    Article  PubMed  PubMed Central  Google Scholar 

  • Marlow N, Wolke D, Bracewell MA, Samara M (2005) Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Marlow N, Hennessy EM, Bracewell MA, Wolke D (2007) Motor and executive function at 6 years of age after extremely preterm birth. Pediatrics 120(4):793–804

    Article  PubMed  Google Scholar 

  • Mc Carthy DA (1972) Manual for the McCarthy scales of children’s abilities. The Psychological Corp., New York

    Google Scholar 

  • McCormick MC (1993) Has the prevalence of handicapped infants increased with improved survival of the very low birth weight infant? Clin Perinatol 20(1):263–277

    CAS  PubMed  Google Scholar 

  • McCormick MC, Gortmaker SL, Sobol AM (1990) Very low birth weight children: behavior problems and school difficulty in a national sample. J Pediatr 117(5):687–693

    Article  CAS  PubMed  Google Scholar 

  • McIntire DD, Leveno KJ (2008) Neonatal mortality and morbidity rates in late preterm births compared with births at term. Obstet Gynecol 111(1):35–41

    Article  PubMed  Google Scholar 

  • McLaughlin KA, Breslau J, Green JG, Lakoma MD, Sampson NA, Zaslavsky AM et al (2011) Childhood socio-economic status and the onset, persistence, and severity of DSM-IV mental disorders in a US national sample. Soc Sci Med 73(7):1088–1096

    Article  PubMed  PubMed Central  Google Scholar 

  • Ment LR, Oh W, Ehrenkranz RA, Philip AG, Vohr B, Allan W et al (1994) Low-dose indomethacin and prevention of intraventricular hemorrhage: a multicenter randomized trial. Pediatrics 93(4):543–550

    CAS  PubMed  Google Scholar 

  • Ment LR, Vohr B, Allan W, Katz KH, Schneider KC, Westerveld M et al (2003) Change in cognitive function over time in very low-birth-weight infants. JAMA 289(6):705–711

    Article  PubMed  Google Scholar 

  • Miller LJ (1988) Miller Assessment for Preschoolers (MAP). The Psychological Corporation, San Antonio

    Google Scholar 

  • Msall ME (1996) Functional assessment in neurodevelopmental disabilities. In: Capute AJ, Accardo PJ (eds) Developmental disabilities in infancy and children, 2nd edn. Paul Brookes Publishing, Baltimore, pp 371–392

    Google Scholar 

  • Msall ME (2005) Measuring functional skills in preschool children at risk for neurodevelopmental disabilities. Ment Retard Dev Disabil Res Rev 11(3):263–273

    Article  PubMed  Google Scholar 

  • Msall ME, Buck GM, Rogers BT, Catanzaro NL (1992) Kindergarten readiness after extreme prematurity. Am J Dis Child 146(11):1371–1375

    CAS  PubMed  Google Scholar 

  • Msall ME, DiGaudio K, Duffy LC, LaForest S, Braun S, Granger CV, Wee FIM (1994) Normative sample of an instrument for tracking functional independence in children. Clin Pediatr (Phila) 33(7):431–438

    Article  CAS  Google Scholar 

  • Msall ME, Rogers B, Ripstein H et al (1997) Measurements of functional outcomes in children with cerebral palsy. Mental Retard Dev Disabil Res Rev 3:431

    Google Scholar 

  • Msall ME, Phelps DL, DiGaudio KM, Dobson V, Tung B, McClead RE et al (2000) Severity of neonatal retinopathy of prematurity is predictive of neurodevelopmental functional outcome at age 5.5 years. Behalf of the Cryotherapy for Retinopathy of Prematurity Cooperative Group. Pediatrics 106(5):998–1005

    Article  CAS  PubMed  Google Scholar 

  • Msall ME, Phelps DL, Hardy RJ, Dobson V, Quinn GE, Summers CG et al (2004) Educational and social competencies at 8 years in children with threshold retinopathy of prematurity in the CRYO-ROP multicenter study. Pediatrics 113(4):790–799

    Article  PubMed  Google Scholar 

  • National Institutes of Health (NIH) (1995) Consensus development conference: effects of corticosteroids for fetal maturation on perinatal outcomes. Am J Obstet 173:246–248

    Article  Google Scholar 

  • Nehring AD, Nehring EM, Bruni JR et al (1992) Learning Accomplishment Profile – Diagnostic (LAP-D) standardized assessment – 1992 revision and standardization. Kaplan Press, Examiner’s Manual, Lewisville

    Google Scholar 

  • Newborg J, Jock JR, Wnek L et al (1984) Battelle development inventory and recalibrated technical data and morns: examiner’s manual. DLG, LINC Associates. Teaching Resources, Allen

    Google Scholar 

  • O’Callaghan MJ, Burns YR, Gray PH, Harvey JM, Mohay H, Rogers YM et al (1996) School performance of ELBW children: a controlled study. Dev Med Child Neurol 38(10):917–926

    Article  PubMed  Google Scholar 

  • O’Shea TM, Klinepeter KL, Goldstein DJ, Jackson BW, Dillard RG (1997) Survival and developmental disability in infants with birth weights of 501 to 800 grams, born between 1979 and 1994. Pediatrics 100(6):982–986

    Article  PubMed  Google Scholar 

  • Ortiz-Mantilla S, Choudhury N, Leevers H, Benasich AA (2008) Understanding language and cognitive deficits in very low birth weight children. Dev Psychobiol 50(2):107–126

    Article  PubMed  Google Scholar 

  • Palisano RJ (1993) Validity of goal attainment scaling in infants with motor delays. Phys Ther 73(10):651–658; discussion 658–660

    CAS  PubMed  Google Scholar 

  • Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B (1997) Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 39(4):214–223

    Article  CAS  PubMed  Google Scholar 

  • Palisano RJ, Cameron D, Rosenbaum PL, Walter SD, Russell D (2006) Stability of the gross motor function classification system. Dev Med Child Neurol 48(6):424–428

    Article  PubMed  Google Scholar 

  • Patel RM, Kandefer S, Walsh MC, Bell EF, Carlo WA, Laptook AR et al (2015) Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med 372(4):331–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen SJ, Sommerfelt K, Markestad T (2000) Early motor development of premature infants with birthweight less than 2000 grams. Acta Paediatr 89(12):1456–1461

    Article  CAS  PubMed  Google Scholar 

  • Peterson BS, Vohr B, Kane MJ, Whalen DH, Schneider KC, Katz KH et al (2002) A functional magnetic resonance imaging study of language processing and its cognitive correlates in prematurely born children. Pediatrics 110(6):1153–1162

    Article  PubMed  Google Scholar 

  • Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ (2009) Increased risk of adverse neurological development for late preterm infants. J Pediatr 154(2):169–176

    Article  PubMed  Google Scholar 

  • Piecuch RE, Leonard CH, Cooper BA, Sehring SA (1997) Outcome of extremely low birth weight infants (500 to 999 grams) over a 12-year period. Pediatrics 100(4):633–639

    Article  CAS  PubMed  Google Scholar 

  • Raju TN, Higgins RD, Stark AR, Leveno KJ (2006) Optimizing care and outcome for late-preterm (near-term) infants: a summary of the workshop sponsored by the National Institute of Child Health and Human Development. Pediatrics 118(3):1207–1214

    Article  PubMed  Google Scholar 

  • Rickards AL, Ryan MM, Kitchen WH (1988) Longitudinal study of very low birthweight infants: intelligence and aspects of school progress at 14 years of age. Aust Paediatr J 24(1):19–23

    CAS  PubMed  Google Scholar 

  • Rickards AL, Kelly EA, Doyle LW, Callanan C (2001) Cognition, academic progress, behavior and self-concept at 14 years of very low birth weight children. J Dev Behav Pediatr 22(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Robins DL, Fein D, Barton ML, Green JA (2001) The modified checklist for autism in toddlers: an initial study investigating the early detection of autism and pervasive developmental disorders. J Autism Dev Disord 31(2):131–144

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum P, Saigal S, Szatmari P, Hoult L (1995) Vineland adaptive behavior scales as a summary of functional outcome of extremely low-birthweight children. Dev Med Child Neurol 37(7):577–586

    Article  CAS  PubMed  Google Scholar 

  • Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S (1989) The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol 31(3):341–352

    Article  CAS  PubMed  Google Scholar 

  • Russell DJ, Avery LM, Rosenbaum P, Raina PS, Walter SD, Palisano R (2000) Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther 80:873–885

    CAS  PubMed  Google Scholar 

  • Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ (2002) Gross motor function measure (GMFM-66 & GMFM-88) user’s manual. Mackeith Press, London

    Google Scholar 

  • Rysavy MA, Li L, Bell EF, Das A, Hintz SR, Stoll BJ et al (2015) Between-hospital variation in treatment and outcomes in extremely preterm infants. N Engl J Med 372(19):1801–1811

    Article  PubMed  PubMed Central  Google Scholar 

  • Saigal S, Hoult LA, Streiner DL, Stoskopf BL, Rosenbaum PL (2000) School difficulties at adolescence in a regional cohort of children who were extremely low birth weight. Pediatrics 105(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Saigal S, den Ouden L, Wolke D, Hoult L, Paneth N, Streiner DL et al (2003) School-age outcomes in children who were extremely low birth weight from four international population-based cohorts. Pediatrics 112(4):943–950

    Article  PubMed  Google Scholar 

  • Schendel D, Bhasin TK (2008) Birth weight and gestational age characteristics of children with autism, including a comparison with other developmental disabilities. Pediatrics 121(6):1155–1164

    Article  PubMed  Google Scholar 

  • Schmidt B, Davis P, Moddemann D, Ohlsson A, Roberts RS, Saigal S et al (2001) Long-term effects of indomethacin prophylaxis in extremely-low-birth-weight infants. N Engl J Med 344(26):1966–1972

    Article  CAS  PubMed  Google Scholar 

  • Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS, Whitfield MF (2003) Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA 289(9):1124–1129

    Article  PubMed  Google Scholar 

  • Schwartz RM, Luby AM, Scanlon JW, Kellogg RJ (1994) Effect of surfactant on morbidity, mortality, and resource use in newborn infants weighing 500 to 1500 g. N Engl J Med 330(21):1476–1480

    Article  CAS  PubMed  Google Scholar 

  • Scott MN, Taylor HG, Fristad MA, Klein N, Espy KA, Minich N et al (2012) Behavior disorders in extremely preterm/extremely low birth weight children in kindergarten. J Dev Behav Pediatr 33(3):202–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Semel E, Wiig EH, Secord WA (1995) Clinical evaluation of language fundamentals, 3rd edn. The Psychological Corporation Harcourt Base Co., San Antonio

    Google Scholar 

  • Shankaran S, Johnson Y, Langer JC, Vohr BR, Fanaroff AA, Wright LL et al (2004) Outcome of extremely-low-birth-weight infants at highest risk: gestational age < or =24 weeks, birth weight < or =750 g, and 1-minute Apgar < or =3. Am J Obstet Gynecol 191(4):1084–1091

    Article  PubMed  Google Scholar 

  • Siegel B (2004) Pervasive developmental disorders screening test-II. Psych Corp, San Antonio

    Google Scholar 

  • Sparrow S, Balla D, Cicchetti D (1984) Vineland adaptive behavior scales: interview edition, survey form manual. A revision of the Vineland Social Maturity Scale by E.A. Doll. American Guidance Service, Circle Pines

    Google Scholar 

  • Stephens BE, Bann CM, Watson VE, Sheinkopf SJ, Peralta-Carcelen M, Bodnar A et al (2012) Screening for autism spectrum disorders in extremely preterm infants. J Dev Behav Pediatr 33(7):535–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC et al (2010) Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126(3):443–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314(10):1039–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor HG, Klein N, Hack M (2000a) School-age consequences of birth weight less than 750 g: a review and update. Dev Neuropsychol 17(3):289–321

    Article  CAS  PubMed  Google Scholar 

  • Taylor HG, Klein N, Minich NM, Hack M (2000b) Middle-school-age outcomes in children with very low birthweight. Child Dev 71(6):1495–1511

    Article  CAS  PubMed  Google Scholar 

  • Taylor GH, Klein NM, Minich NM, Hack M (2000c) Verbal memory deficits in children with less than 750 g birth weight. Child Neuropsychol 6(1):49–63

    Article  CAS  PubMed  Google Scholar 

  • Taylor HG, Klein N, Drotar D, Schluchter M, Hack M (2006) Consequences and risks of <1000-g birth weight for neuropsychological skills, achievement, and adaptive functioning. J Dev Behav Pediatr 27(6):459–469

    Article  PubMed  Google Scholar 

  • Thebaud B, Lacaze-Masmonteil T, Watterberg K (2001) Postnatal glucocorticoids in very preterm infants: “the good, the bad, and the ugly”? Pediatrics 107(2):413–415

    Article  CAS  PubMed  Google Scholar 

  • Thorndike RI, Hagan EP, Sattler JM (1986) Stanford-Binet intelligence scale, 4th edn. Riverside, Chicago

    Google Scholar 

  • Tomashek KM, Shapiro-Mendoza CK, Davidoff MJ, Petrini JR (2007) Differences in mortality between late-preterm and term singleton infants in the United States, 1995-2002. J Pediatr 151(5):450–456, 456 e451

    Article  PubMed  Google Scholar 

  • Tyson JE, Parikh NA, Langer J, Green C, Higgins RD (2008) Intensive care for extreme prematurity – moving beyond gestational age. N Engl J Med 358(16):1672–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaucher YE, Peralta-Carcelen M, Finer NN, Carlo WA, Gantz MG, Walsh MC et al (2012) Neurodevelopmental outcomes in the early CPAP and pulse oximetry trial. N Engl J Med 367(26):2495–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vohr B (2013) Long-term outcomes of moderately preterm, late preterm, and early term infants. Clin Perinatol 40(4):739–751

    Article  PubMed  Google Scholar 

  • Vohr BR, Msall ME (1997) Neuropsychological and functional outcomes of very low birth weight infants. Semin Perinatol 21(3):202–220

    Article  CAS  PubMed  Google Scholar 

  • Vohr BR, Garcia Coll C, Oh W (1988) Language development of low-birthweight infants at two years. Dev Med Child Neurol 30(5):608–615

    Article  CAS  PubMed  Google Scholar 

  • Vohr BR, Garcia-Coll C, Oh W (1989) Language and neurodevelopmental outcome of low-birthweight infants at three years. Dev Med Child Neurol 31(5):582–590

    Article  CAS  PubMed  Google Scholar 

  • Vohr BR, Wright LL, Dusick AM, Mele L, Verter J, Steichen JJ (2000a) Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Developmental Neonatal Research Network, 1993–1994. Pediatrics 105(6):1216–1226

    Article  CAS  PubMed  Google Scholar 

  • Vohr BR, Widen JE, Cone-Wesson B, Sininger YS, Gorga MP, Folsom RC et al (2000b) Identification of neonatal hearing impairment: characteristics of infants in the neonatal intensive care unit and well-baby nursery. Ear Hear 21(5):373–382

    Article  CAS  PubMed  Google Scholar 

  • Vohr B, Wright LL, Hack M, Aylward G, Hirtz D (2004a) Follow-up care of high-risk infants. Pediatr Suppl 114:1377–1397

    Google Scholar 

  • Vohr BR, Wright LL, Dusick AM, Perritt R, Poole WK, Tyson JE et al (2004b) Center differences and outcomes of extremely low birth weight infants. Pediatrics 113(4):781–789

    Article  PubMed  Google Scholar 

  • Vohr BR, Wright LL, Poole WK, Mc Donald SA (2005a) Neurodevelopmental outcomes of extremely low birth weight infants <32 weeks’ gestation between 1993 and 1998. Pediatrics 116(3):635–643

    Article  PubMed  Google Scholar 

  • Vohr BR, Msall ME, Wilson D, Wright LL, Mc Donald S, Poole WK (2005b) Spectrum of gross motor function in extremely low birth weight children with cerebral palsy at 18 months of age. Pediatrics 116(1):123–129

    Article  PubMed  Google Scholar 

  • Vohr BR, Stephens BE, Higgins RD, Bann CM, Hintz SR, Das A et al (2012) Are outcomes of extremely preterm infants improving? Impact of Bayley assessment on outcomes. J Pediatr 161(2):222-228.e3–222-228.e223

    Article  Google Scholar 

  • Vohr BR, Topol D, Watson V, St Pierre L, Tucker R (2014) The importance of language in the home for school-age children with permanent hearing loss. Acta Paediatr 103(1):62–69

    Article  PubMed  Google Scholar 

  • Wagner RK, Torgesen JK, Rashotte CA (1999a) Comprehensive test of phonological processing. PRO-ED, Austin

    Google Scholar 

  • Wagner RK, Torgesen JK, Rashotte CA (1999b) Test of word reading efficiency. PRO-ED, Austin

    Google Scholar 

  • Walsh MC, Morris BH, Wrage LA, Vohr BR, Poole WK, Tyson JE et al (2005) Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr 146(6):798–804

    Article  PubMed  Google Scholar 

  • Ware J, Taeusch HW, Soll RF, McCormick MC (1990) Health and developmental outcomes of a surfactant controlled trial: follow-up at 2 years. Pediatrics 85(6):1103–1107

    CAS  PubMed  Google Scholar 

  • Watson JE, Kirby RS, Kelleher KJ, Bradley RH (1996) Effects of poverty on home environment: an analysis of three-year outcome data for low birth weight premature infants. J Pediatr Psychol 21(3):419–431

    Article  CAS  PubMed  Google Scholar 

  • Wechsler D (1989) Manual for the Wechsler preschool and primary scale of intelligence-revised. Psychological Corporation, San Antonio

    Google Scholar 

  • Whitfield MF, Eckstein Grunau RV, Holsti L (1997) Extremely premature (<800 g) school children: multiple areas of hidden disability. Arch Dis Child 77:F85–F90

    Article  CAS  Google Scholar 

  • Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M (2005) Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics 115(4):997–1003

    Article  PubMed  Google Scholar 

  • Wilson-Costello D, Friedman H, Minich N, Siner B, Taylor G, Schluchter M et al (2007) Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics 119(1):37–45

    Article  PubMed  Google Scholar 

  • Wolke D, Samara M, Bracewell M, Marlow N (2008) Specific language difficulties and school achievement in children born at 25 weeks of gestation or less. J Pediatr 152(2):256–262

    Article  PubMed  Google Scholar 

  • Wood NS, Marlow N, Costeloe K, Gibson AT, Wilkinson AR (2000) Neurologic and developmental disability after extremely preterm birth. EPICure Study Group. N Engl J Med 343(6):378–384

    Article  CAS  PubMed  Google Scholar 

  • Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N, Wilkinson AR (2005) The EPICure study: associations and antecedents of neurological and developmental disability at 30 months of age following extremely preterm birth. Arch Dis Child Fetal Neonatal Ed 90(2):F134–F140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodcock RW, Johnson MB (1989) Woodcock Johnson psycho-educational. Battery revised. DLM Teaching Resources, Allen

    Google Scholar 

  • Zimmerman IL, Steiner VG, Pond RE (1992) Preschool language scale, 3rd edn. The Psychological Corporation, San Antonio

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contribution of Bonnie E. Stephens MD to the 2009 edition of Normal and Abnormal Neurodevelopmental and Behavioral Outcomes of Very Low Birth Weight Infants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty R. Vohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Vohr, B.R. (2016). Normal and Abnormal Neurodevelopmental and Behavioral Outcomes of Very Low-Birth Weight (VLBW) Infants. In: Buonocore, G., Bracci, R., Weindling, M. (eds) Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-319-18159-2_266-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18159-2_266-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-18159-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics