Skip to main content

Biomarkers for Renal Cell Carcinoma

  • Chapter
Kidney Cancer

Abstract

In recent years, there has been a remarkable increase in interest in biomarkers, especially as a tool with tremendous utility in cancer. Biomarkers provide opportunities for early detection, accurate diagnosis, and prediction of clinical outcomes with regard to response to therapy, potential tumor recurrence, and survival. They can also provide additional insight into the pathogenesis of disease. Biomarkers both provide a strategy for clustering similar subsets of tumors on a population level and also allow individualized tumor information for case-by-case decision-making. Biomarkers are especially attractive because they are quantitative, objective, and readily adaptable for clinical implementation. Traditional clinical practice relies heavily on signs and symptoms as well as radiographic imagery, which can be highly subjective as well as influenced by a variety of sources independent of cancer. In contrast, biomarkers are helpful as more objective and reliable factors, which can either supplement or replace these largely subjective measures. Biomarkers can potentially play important roles in clinical research by clarifying measurable endpoints, which may lead to significant decrease of cost and duration of clinical trials. Currently, research institutes, pharmaceutical companies, and the US Food and Drug Administration (FDA) are putting vigorous effort toward integrating biomarkers more extensively into clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856

    CAS  PubMed  Google Scholar 

  2. Fuzery AK et al (2013) Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics 10(1):13

    PubMed Central  PubMed  Google Scholar 

  3. King SC et al (2014) Continued increase in incidence of renal cell carcinoma, especially in young patients and high grade disease: United States 2001 to 2010. J Urol 191(6):1665–1670

    Google Scholar 

  4. U.S. Cancer Statistics Working Group (2013) United States Cancer Statistics: 1999–2010 incidence and mortality web-based report. [cited 2014 Jul 25]; Available from: www.cdc.gov/uscs

  5. Linehan WM RB, Yang JC (2008) Cancer of the kidney. In: DeVita VT HS Jr, Rosenberg SA (eds) Cancer principles and practice of oncology, 8th edn. Lippincott William & Wilkins, Philadelphia, pp 1331–1354

    Google Scholar 

  6. Lin L et al (2010) LC-MS based serum metabonomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J Proteome Res 10(3):1396–1405

    Google Scholar 

  7. Seliger B et al (2011) Linkage of microRNA and proteome-based profiling data sets: a perspective for the priorization of candidate biomarkers in renal cell carcinoma? J Proteome Res 10(1):191–199

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Su Kim D et al (2013) Composite three-marker assay for early detection of kidney cancer. Cancer Epidemiol Biomarkers Prev 22(3):390–398

    PubMed  Google Scholar 

  9. Frantzi M et al (2014) Discovery and validation of urinary biomarkers for detection of renal cell carcinoma. J Proteomics 98:44–58

    CAS  PubMed  Google Scholar 

  10. Nickerson ML et al (2008) Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 14(15):4726–4734

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Zbar B et al (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327(6124):721–724

    CAS  PubMed  Google Scholar 

  12. Kaelin WG Jr (2008) The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8(11):865–873

    CAS  PubMed  Google Scholar 

  13. Gordan JD et al (2008) HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14(6):435–446

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Li M, Kim WY (2010) Two sides to every story: the HIF-dependent and HIF-independent functions of pVHL. J Cell Mol Med. Epub ahead of print

    Google Scholar 

  15. Semenza GL (2001) HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13(2):167–171

    CAS  PubMed  Google Scholar 

  16. Sang N et al (2002) Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Mol Cell Biol 22(9):2984–2992

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Maynard MA et al (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278(13):11032–11040

    CAS  PubMed  Google Scholar 

  18. Raval RR et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Rathmell WK et al (2004) HIF transcription factor expression and induction of hypoxic response genes in a retroperitoneal angiosarcoma. Anticancer Res 24(1):167–169

    CAS  PubMed  Google Scholar 

  20. Hacker KE, Lee CM, Rathmell WK (2008) VHL type 2B mutations retain VBC complex form and function. PLoS ONE 3(11):e3801

    PubMed Central  PubMed  Google Scholar 

  21. Iliopoulos O et al (1996) Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci U S A 93(20):10595–10599

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    CAS  PubMed  Google Scholar 

  23. Fox SB et al (2004) Phosphorylated KDR is expressed in the neoplastic and stromal elements of human renal tumours and shuttles from cell membrane to nucleus. J Pathol 202(3):313–320

    CAS  PubMed  Google Scholar 

  24. Calvani M et al (2008) Differential involvement of vascular endothelial growth factor in the survival of hypoxic colon cancer cells. Cancer Res 68(1):285–291

    CAS  PubMed  Google Scholar 

  25. Rini BI et al (2010) Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol 28(13):2137–2143

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Motzer RJ et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124

    CAS  PubMed  Google Scholar 

  27. Escudier B et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356(2):125–134

    CAS  PubMed  Google Scholar 

  28. Motzer RJ et al (2013) Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369(8):722–731

    CAS  PubMed  Google Scholar 

  29. Ivanov S et al (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158(3):905–919

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Genega EM et al (2010) Carbonic anhydrase IX expression in renal neoplasms: correlation with tumor type and grade. Am J Clin Pathol 134(6):873–879

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456):43–49

    Google Scholar 

  32. Pantuck AJ, Fang Z, Liu X et al (2005) Gene expression and tissue microarray analysis of interleukin-2 complete responders in patients with metastatic renal cell carcinoma. J Clin Oncol 23(16 suppl pt 1)):Abstract 4535

    Google Scholar 

  33. Hudes G et al (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356(22):2271–2281

    CAS  PubMed  Google Scholar 

  34. Motzer RJ et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    CAS  PubMed  Google Scholar 

  35. Jonasch E et al (2010) Upfront, randomized, phase 2 trial of sorafenib versus sorafenib and low-dose interferon alfa in patients with advanced renal cell carcinoma: clinical and biomarker analysis. Cancer 116(1):57–65

    CAS  PubMed  Google Scholar 

  36. Atkins MB et al (2009) Treatment selection for patients with metastatic renal cell carcinoma. Cancer 115(10 Suppl):2327–2333

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Nishikawa M et al (2014) Expression level of phosphorylated-4E-binding protein 1 in radical nephrectomy specimens as a prognostic predictor in patients with metastatic renal cell carcinoma treated with mammalian target of rapamycin inhibitors. Med Oncol 31(1):792

    PubMed  Google Scholar 

  38. Li S et al (2014) Phosphorylation of mTOR and S6RP predicts the efficacy of everolimus in patients with metastatic renal cell carcinoma. BMC Cancer 14(1):376

    PubMed Central  PubMed  Google Scholar 

  39. Varela I et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Dalgliesh GL et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Pena-Llopis S et al (2012) BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 44(7):751–759

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Brugarolas J (2014) Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol 32(18):1968–1976

    CAS  PubMed  Google Scholar 

  43. Pena-Llopis S et al (2013) Cooperation and antagonism among cancer genes: the renal cancer paradigm. Cancer Res 73(14):4173–4179

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Toma MI et al (2008) Loss of heterozygosity and copy number abnormality in clear cell renal cell carcinoma discovered by high-density affymetrix 10 K single nucleotide polymorphism mapping array. Neoplasia 10(7):634–642

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Gossage L et al (2014) Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes Chromosom Cancer 53(1):38–51

    CAS  PubMed  Google Scholar 

  46. Hakimi AA et al (2013) Adverse outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clin Cancer Res 19(12):3259–3267

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Hakimi AA et al (2013) Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 63(5):848–854

    PubMed Central  PubMed  Google Scholar 

  48. Guo G et al (2012) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44(1):17–19

    CAS  Google Scholar 

  49. Harbour JW et al (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330(6009):1410–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kapur P et al (2013) Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 14(2):159–167

    CAS  PubMed  Google Scholar 

  51. Joseph RW et al (2014) Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer 120(7):1059–1067

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kapur P et al (2014) BAP1 immunohistochemistry predicts outcomes in a multi-institutional cohort with clear cell renal cell carcinoma. J Urol 191(3):603–610

    CAS  PubMed  Google Scholar 

  53. Farley MN et al (2013) A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol Cancer Res 11(9):1061–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Duns G et al (2010) Histone methyltransferase gene SETD2 is a novel tumor suppressor gene in clear cell renal cell carcinoma. Cancer Res 70(11):4287–4291

    CAS  PubMed  Google Scholar 

  55. Cindolo L et al (2008) Validation by calibration of the UCLA integrated staging system prognostic model for nonmetastatic renal cell carcinoma after nephrectomy. Cancer 113(1):65–71

    PubMed  Google Scholar 

  56. Motzer RJ et al (2008) Prognostic nomogram for sunitinib in patients with metastatic renal cell carcinoma. Cancer 113(7):1552–1558

    CAS  PubMed  Google Scholar 

  57. Leibovich BC et al (2010) Histological subtype is an independent predictor of outcome for patients with renal cell carcinoma. J Urol 183(4):1309–1315

    PubMed  Google Scholar 

  58. Frank I et al (2002) An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol 168(6):2395–2400

    PubMed  Google Scholar 

  59. Katz MD et al (2009) The role of lymphovascular space invasion in renal cell carcinoma as a prognostic marker of survival after curative resection. Urol Oncol 29(6):738–744

    Google Scholar 

  60. Molina AM et al (2010) Sarcomatoid-variant renal cell carcinoma: treatment outcome and survival in advanced disease. Am J Clin Oncol 34(5):454–459

    Google Scholar 

  61. Furge KA et al (2004) Robust classification of renal cell carcinoma based on gene expression data and predicted cytogenetic profiles. Cancer Res 64(12):4117–4121

    CAS  PubMed  Google Scholar 

  62. Meloni-Ehrig AM (2002) Renal cancer: cytogenetic and molecular genetic aspects. Am J Med Genet 115(3):164–172

    PubMed  Google Scholar 

  63. Sultmann H et al (2005) Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin Cancer Res 11(2 Pt 1):646–655

    PubMed  Google Scholar 

  64. Klatte T et al (2009) Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma. J Clin Oncol 27(5):746–753

    PubMed  Google Scholar 

  65. Balint I et al (2009) Trisomy 7 and 17 mark papillary renal cell tumours irrespectively of variation of the phenotype. J Clin Pathol 62(10):892–895

    CAS  PubMed  Google Scholar 

  66. Kovacs G et al (1991) Cytogenetics of papillary renal cell tumors. Genes Chromosom Cancer 3(4):249–255

    CAS  PubMed  Google Scholar 

  67. Speicher MR et al (1994) Specific loss of chromosomes 1, 2, 6, 10, 13, 17, and 21 in chromophobe renal cell carcinomas revealed by comparative genomic hybridization. Am J Pathol 145(2):356–364

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Davis CF, Cherniack AD, Wang M, Yang L, Shen et al (2014) The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26(3):319–330

    Google Scholar 

  69. Pawlowski R et al (2013) Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer 132(2):E11–E17

    CAS  PubMed  Google Scholar 

  70. Takahashi M et al (2001) Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc Natl Acad Sci U S A 98(17):9754–9759

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Brannon AR et al (2010) Molecular stratification of clear cell renal cell carcinoma by consensus clustering reveals distinct subtypes and survival patterns. Genes Cancer 1(2):152–163

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Brooks SA et al (2014) ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur Urol 66(1):77–84

    CAS  PubMed  Google Scholar 

  73. Rini BI ZM, Aydin H et al (2010) Identification of prognostic genomic markers in patients with localized clear cell renal cell carcinoma (ccRCC). J Clin Oncol (Meet Abstr) 28(15 Suppl):4501

    Google Scholar 

  74. Cifola I et al (2008) Genome-wide screening of copy number alterations and LOH events in renal cell carcinomas and integration with gene expression profile. Mol Cancer 7:6

    PubMed Central  PubMed  Google Scholar 

  75. Costa VL et al (2007) Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors. BMC Cancer 7:133

    PubMed Central  PubMed  Google Scholar 

  76. Beroukhim R et al (2009) Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 69(11):4674–4681

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Vieira J et al (2010) Feasibility of differential diagnosis of kidney tumors by comparative genomic hybridization of fine needle aspiration biopsies. Genes Chromosom Cancer 49(10):935–947

    CAS  PubMed  Google Scholar 

  78. Kleinrath T et al (2007) Interleukin-4 promoter polymorphisms: a genetic prognostic factor for survival in metastatic renal cell carcinoma. J Clin Oncol 25(7):845–851

    CAS  PubMed  Google Scholar 

  79. Kawai Y et al (2007) Associations of single nucleotide polymorphisms in the vascular endothelial growth factor gene with the characteristics and prognosis of renal cell carcinomas. Eur Urol 52(4):1147–1155

    CAS  PubMed  Google Scholar 

  80. Xu CF et al (2011) Pazopanib efficacy in renal cell carcinoma: evidence for predictive genetic markers in angiogenesis-related and exposure-related genes. J Clin Oncol 29(18):2557–2564

    CAS  PubMed  Google Scholar 

  81. Xu C-F et al (2015) IL8 polymorphisms and overall survival in pazopanib- or sunitinib-treated patients with renal cell carcinoma. Br J Cancer. 112(7):1190–1198

    Google Scholar 

  82. Scartozzi M et al (2013) VEGF and VEGFR polymorphisms affect clinical outcome in advanced renal cell carcinoma patients receiving first-line sunitinib. Br J Cancer 108(5):1126–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Klatte T et al (2007) Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 13(24):7388–7393

    CAS  PubMed  Google Scholar 

  84. Saez MI et al (2012) Hypoxia-inducible factor (HIF) 1{alpha} and 2{alpha} as predictive markers of outcome to VEGFR tyrosine kinase inhibitors (TKI) in renal cell carcinoma (RCC). J Clin Oncol 30(15_Suppl):4630, ASCO Meeting Abstracts

    Google Scholar 

  85. Garcia-Donas J et al (2013) Prospective study assessing hypoxia-related proteins as markers for the outcome of treatment with sunitinib in advanced clear-cell renal cell carcinoma. Ann Oncol 24(9):2409–2414

    CAS  PubMed  Google Scholar 

  86. Vroling L et al (2009) Increased numbers of small circulating endothelial cells in renal cell cancer patients treated with sunitinib. Angiogenesis 12(1):69–79

    CAS  PubMed  Google Scholar 

  87. Farace F et al (2011) Levels of circulating CD45(dim)CD34(+)VEGFR2(+) progenitor cells correlate with outcome in metastatic renal cell carcinoma patients treated with tyrosine kinase inhibitors. Br J Cancer 104(7):1144–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Cangiano T et al (1999) Sarcomatoid renal cell carcinoma: biologic behavior, prognosis, and response to combined surgical resection and immunotherapy. J Clin Oncol 17(2):523–528

    CAS  PubMed  Google Scholar 

  89. Motzer RJ et al (2002) Treatment outcome and survival associated with metastatic renal cell carcinoma of non-clear-cell histology. J Clin Oncol 20(9):2376–2381

    PubMed  Google Scholar 

  90. Upton MP et al (2005) Histologic predictors of renal cell carcinoma response to interleukin-2-based therapy. J Immunother 28(5):488–495

    CAS  PubMed  Google Scholar 

  91. McDermott DF et al (2010) The high-dose aldesleukin (HD IL-2) “SELECT” trial in patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol 28(15_Suppl):4514, ASCO Meeting Abstracts

    Google Scholar 

  92. Atkins M et al (2005) Carbonic anhydrase IX expression predicts outcome of interleukin 2 therapy for renal cancer. Clin Cancer Res 11(10):3714–3721

    CAS  PubMed  Google Scholar 

  93. Jaeger E, Waldman F, Roydasgupta R et al. (2008) Array-based comparative genomic hybridization (CGH) identifies chromosomal imbalances between interleukin-2 complete and non-responders. J Clin Oncol 26(15 suppl):Abstract 5043

    Google Scholar 

  94. Ito N et al (2007) STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J Clin Oncol 25(19):2785–2791

    CAS  PubMed  Google Scholar 

  95. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Rini BI (2010) Biomarkers: hypertension following anti-angiogenesis therapy. Clin Adv Hematol Oncol 8(6):415–416

    PubMed  Google Scholar 

  97. Rini BI et al (2010) Toxicity of sunitinib plus bevacizumab in renal cell carcinoma. J Clin Oncol 28(17):e284–e285; author reply e286–7

    PubMed  Google Scholar 

  98. Rini BI, Cohen D, Lu D et al. (2010) Hypertension (HTN) as a biomarker of efficacy in patients (pts) with metastatic renal cell carcinoma (mRCC) treated with sunitinib. Presented at the 2010 Genitourinary Cancers Symp [abstr 312]

    Google Scholar 

  99. Choueiri TK et al (2008) von Hippel-Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. J Urol 180(3):860–865; discussion 865–866

    CAS  PubMed  Google Scholar 

  100. Gad S, Sultan-Amar V, Meric J et al (2007) Somatic von Hippel-Lindau (VHL) gene analysis and clinical outcome under antiangiogenic treatment in metastatic renal cell carcinoma: preliminary results. Target Oncol 2:3–6

    Google Scholar 

  101. Hutson T, Davis I, Macheils JH et al. (2008) Biomarker analysis and final efficacy and safety results of a phase II renal cell carcinoma trial with pazopanib (GW786034), a multikinase angiogenesis inhibitor. J Clin Oncol 26:Abstract 5046

    Google Scholar 

  102. Pena C et al (2010) Biomarkers predicting outcome in patients with advanced renal cell carcinoma: results from sorafenib phase III treatment approaches in renal cancer global evaluation trial. Clin Cancer Res 16(19):4853–4863

    CAS  PubMed  Google Scholar 

  103. Patel PH, Chadalavada R, Ishill NM et al. (2008) Hypoxia-inducible factor (HIF) 1a and 2a levels in cell lines and human tumor predicts response to sunitinib in renal cell carcinoma (RCC). J Clin Oncol 26:Abstract 5008

    Google Scholar 

  104. Shen C et al (2011) Genetic and functional studies implicate HIF1alpha as a 14q kidney cancer suppressor gene. Cancer Discov 1(3):222–235

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Escudier B et al (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27(20):3312–3318

    CAS  PubMed  Google Scholar 

  106. Bukowski RM, Eisen T, Szczylik C et al (2007) Final results of the randomized phase III trial of sorafenib in advanced renal cell carcinoma: survival and biomarker analysis. J Clin Oncol 25:Abstract 5023

    Google Scholar 

  107. Tran HT et al (2012) Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol 13(8):827–837

    CAS  PubMed  Google Scholar 

  108. Porta C et al (2010) Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib. Kidney Int 77(9):809–815

    CAS  PubMed  Google Scholar 

  109. Rini BI et al (2008) Antitumor activity and biomarker analysis of sunitinib in patients with bevacizumab-refractory metastatic renal cell carcinoma. J Clin Oncol 26(22):3743–3748

    CAS  PubMed  Google Scholar 

  110. DePrimo SE, Bello C (2007) Surrogate biomarkers in evaluating response to anti-angiogenic agents: focus on sunitinib. Ann Oncol 18(Suppl 10):x11–x19

    PubMed  Google Scholar 

  111. Deprimo SE et al (2007) Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med 5:32

    PubMed Central  PubMed  Google Scholar 

  112. D’ Alterio C et al (2012) High CXCR4 expression correlates with sunitinib poor response in metastatic renal cancer. Curr Cancer Drug Targets 12(6):693–702

    Google Scholar 

  113. Zurita AJ et al (2012) A cytokine and angiogenic factor (CAF) analysis in plasma for selection of sorafenib therapy in patients with metastatic renal cell carcinoma. Ann Oncol 23(1):46–52

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Dutcher JP et al (2009) Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med Oncol 26(2):202–209

    CAS  PubMed  Google Scholar 

  115. Plantade A, C.B., Escudier B et al. (2007) Treatment outcome for metastatic papillary and chromophobe renal cell carcinoma (RCC) patients treated with tyrosine-kinase inhibitors (TKIs) sunitinib and sorafenib. J Clin Oncol 25(18 suppl):Abstract 5037

    Google Scholar 

  116. Motzer RJ et al. (2014) Phase II randomized trial comparing sequential first-line everolimus and second-line sunitinib versus first-line sunitinib and second-line everolimus in patients with metastatic renal cell carcinoma. J Clin Oncol 32(25):2765–2772

    Google Scholar 

  117. Velickovic M et al (2002) Intragenic PTEN/MMAC1 loss of heterozygosity in conventional (clear-cell) renal cell carcinoma is associated with poor patient prognosis. Mod Pathol 15(5):479–485

    PubMed  Google Scholar 

  118. Figlin RA et al (2009) Analysis of PTEN and HIF-1alpha and correlation with efficacy in patients with advanced renal cell carcinoma treated with temsirolimus versus interferon-alpha. Cancer 115(16):3651–3660

    CAS  PubMed  Google Scholar 

  119. Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17(6):596–603

    CAS  PubMed  Google Scholar 

  120. Pantuck AJ et al (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109(11):2257–2267

    CAS  PubMed  Google Scholar 

  121. Youssif TA et al (2010) The mammalian target of rapamycin pathway is widely activated without PTEN deletion in renal cell carcinoma metastases. Cancer 117(2):290–300

    PubMed  Google Scholar 

  122. Cho D et al (2007) Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 5(6):379–385

    CAS  PubMed  Google Scholar 

  123. Voss MH et al (2014) Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res 20(7):1955–1964

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Bluemke K et al (2009) Detection of circulating tumor cells in peripheral blood of patients with renal cell carcinoma correlates with prognosis. Cancer Epidemiol Biomarkers Prev 18(8):2190–2194

    CAS  PubMed  Google Scholar 

  125. Slaby O et al (2010) Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res 29:90

    PubMed Central  PubMed  Google Scholar 

  126. Ishihara T et al. (2014) Expression of the tumor suppressive microRNA-23b/27b cluster is a good prognostic marker in clear cell renal cell carcinoma. J Urol 192(6):1822–1830

    Google Scholar 

  127. Wood SL et al (2010) Association of serum amyloid A protein and peptide fragments with prognosis in renal cancer. Br J Cancer 103(1):101–111

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Dolley-Hitze T et al (2010) Angiotensin-2 receptors (AT1-R and AT2-R), new prognostic factors for renal clear-cell carcinoma? Br J Cancer 103(11):1698–1705

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Jagdev SP et al (2010) Improving the accuracy of pre-operative survival prediction in renal cell carcinoma with C-reactive protein. Br J Cancer 103(11):1649–1656

    CAS  PubMed Central  PubMed  Google Scholar 

  130. D’Alterio C et al (2010) Concomitant CXCR4 and CXCR7 expression predicts poor prognosis in renal cancer. Curr Cancer Drug Targets 10(7):772–781

    PubMed  Google Scholar 

  131. Vasudev NS et al (2009) Pre-operative urinary cathepsin D is associated with survival in patients with renal cell carcinoma. Br J Cancer 101(7):1175–1182

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Wagener N et al (2010) Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. BMC Cancer 10:524

    PubMed Central  PubMed  Google Scholar 

  133. Mosashvilli D et al (2010) Global histone acetylation levels: prognostic relevance in patients with renal cell carcinoma. Cancer Sci 101(12):2664–2669

    CAS  PubMed  Google Scholar 

  134. Ronkainen H et al (2010) HuR expression is a marker of poor prognosis in renal cell carcinoma. Tumour Biol 32(3):481–487

    Google Scholar 

  135. Hoffmann NE et al (2008) External validation of IMP3 expression as an independent prognostic marker for metastatic progression and death for patients with clear cell renal cell carcinoma. Cancer 112(7):1471–1479

    PubMed Central  PubMed  Google Scholar 

  136. Kawata N et al (2007) Significant relationship of matrix metalloproteinase 9 with nuclear grade and prognostic impact of tissue inhibitor of metalloproteinase 2 for incidental clear cell renal cell carcinoma. Urology 69(6):1049–1053

    PubMed  Google Scholar 

  137. Merseburger AS et al (2008) Activation of PI3K is associated with reduced survival in renal cell carcinoma. Urol Int 80(4):372–377

    CAS  PubMed  Google Scholar 

  138. Abou Youssif T et al (2011) The mammalian target of rapamycin pathway is widely activated without PTEN deletion in renal cell carcinoma metastases. Cancer 117(2):290–300

    CAS  PubMed  Google Scholar 

  139. Zubac DP et al (2010) Type 1 plasminogen activator inhibitor (PAI-1) in clear cell renal cell carcinoma (CCRCC) and its impact on angiogenesis, progression and patient survival after radical nephrectomy. BMC Urol 10:20

    PubMed Central  PubMed  Google Scholar 

  140. Bandiera A et al (2009) Prognostic factors and analysis of S100a4 protein in resected pulmonary metastases from renal cell carcinoma. World J Surg 33(7):1414–1420

    PubMed  Google Scholar 

  141. Zubac DP et al (2009) The expression of thrombospondin-1 and p53 in clear cell renal cell carcinoma: its relationship to angiogenesis, cell proliferation and cancer specific survival. J Urol 182(5):2144–2149

    PubMed  Google Scholar 

  142. Bui MH et al (2003) Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9(2):802–811

    CAS  PubMed  Google Scholar 

  143. Tsimafeyeu I, Demidov L, Ta H et al (2010) Fibroblast growth factor pathway in renal cell carcinoma. J Clin Oncol (Meet Abstr) 28(15 Suppl):4621

    Google Scholar 

  144. Perez-Gracia JL et al (2009) Identification of TNF-alpha and MMP-9 as potential baseline predictive serum markers of sunitinib activity in patients with renal cell carcinoma using a human cytokine array. Br J Cancer 101(11):1876–1883

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Busse A et al (2011) Systemic immune tuning in renal cell carcinoma: favorable prognostic impact of TGF-beta1 mRNA expression in peripheral blood mononuclear cells. J Immunother 34(1):113–119

    CAS  PubMed  Google Scholar 

  146. Heymach J, Tran H, Fritsche HA et al. (2009) Lower baseline levels of plasma hepatocyte growth factor (HGF), IL-6, IL-8 are correlated with tumor shrinkage in renal cell carcinoma patients treated with pazopanib. Presented at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics. Abstract A11

    Google Scholar 

  147. Bukowski RM et al (2007) Randomized phase II study of erlotinib combined with bevacizumab compared with bevacizumab alone in metastatic renal cell cancer. J Clin Oncol 25(29):4536–4541

    CAS  PubMed  Google Scholar 

  148. Nixon AB et al. (2013) Identification of predictive biomarkers of overall survival (OS) in patients (pts) with advanced renal cell carcinoma (RCC) treated with interferon alpha (I) with or without bevacizumab (B): results from CALGB 90206 (Alliance). J Clin Oncol 31(15_suppl):4520 ASCO Meeting Abstracts

    Google Scholar 

  149. Armstrong AJ, George D, Halabi S et al (2010) Serum lactate dehydrogenase (LDH) as a biomarker for survival with mTOR inhibition in patients with metastatic renal cell carcinoma (RCC). J Clin Oncol (Meet Abstr) 28(15 Suppl):4631

    Google Scholar 

  150. Motzer RJ et al (2010) Phase 3 trial of everolimus for metastatic renal cell carcinoma : final results and analysis of prognostic factors. Cancer 116(18):4256–4265

    CAS  PubMed  Google Scholar 

  151. Xu G et al (2009) Application of SELDI-TOF-MS to identify serum biomarkers for renal cell carcinoma. Cancer Lett 282(2):205–213

    CAS  PubMed  Google Scholar 

  152. Seliger B et al (2009) Combined analysis of transcriptome and proteome data as a tool for the identification of candidate biomarkers in renal cell carcinoma. Proteomics 9(6):1567–1581

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Catchpole G et al. (2009) Metabolic profiling reveals key metabolic features of renal cell carcinoma. J Cell Mol Med 15(1):109–118

    Google Scholar 

  154. Kim K et al (2009) Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol Cell Proteomics 8(3):558–570

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Zira AN et al (2010) (1)H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool. J Proteome Res 9(8):4038–4044

    CAS  PubMed  Google Scholar 

  156. Heinzelmann J et al (2011) Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 29(3):367–373

    Google Scholar 

  157. Liu H et al (2010) Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst Biol 4:51

    PubMed Central  PubMed  Google Scholar 

  158. Feng G et al (2013) Quantification of plasma cell-free DNA in predicting therapeutic efficacy of sorafenib on metastatic clear cell renal cell carcinoma. Dis Markers 34(2):105–111

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Minamimoto R et al (2011) Evaluation of response to multikinase inhibitor in metastatic renal cell carcinoma by FDG PET/contrast-enhanced CT. Clin Nucl Med 35(12):918–923

    Google Scholar 

  160. Divgi CR et al (2007) Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8(4):304–310

    CAS  PubMed  Google Scholar 

  161. Spero M et al (2010) Preoperative staging of renal cell carcinoma using magnetic resonance imaging: comparison with pathological staging. Clin Imaging 34(6):441–447

    PubMed  Google Scholar 

  162. Wang H et al (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0T. Radiology 257(1):135–143

    PubMed  Google Scholar 

  163. Hillman GG et al (2010) Dynamic contrast-enhanced magnetic resonance imaging of sunitinib-induced vascular changes to schedule chemotherapy in renal cell carcinoma xenograft tumors. Transl Oncol 3(5):293–306

    PubMed Central  Google Scholar 

  164. Pedrosa I, Alsop DC, Rofsky NM (2009) Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer 115(10 Suppl):2334–2345

    PubMed  Google Scholar 

  165. Katz-Brull R et al (2005) Decreases in free cholesterol and fatty acid unsaturation in renal cell carcinoma demonstrated by breath-hold magnetic resonance spectroscopy. Am J Physiol Renal Physiol 288(4):F637–F641

    CAS  PubMed  Google Scholar 

  166. Lassau N et al (2010) Dynamic contrast-enhanced ultrasonography (DCE-US): a new tool for the early evaluation of antiangiogenic treatment. Target Oncol 5(1):53–58

    PubMed  Google Scholar 

  167. Choueiri et al (2013) Phase II and biomarker study of the dual MET/VEGFR2 inhibitor foretinib in patients with papillary renal cell carcinoma. J. Clin Oncol. 31(2):181–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kimryn Rathmell MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Rose, T.L., Rathmell, W.K. (2015). Biomarkers for Renal Cell Carcinoma. In: Lara, P., Jonasch, E. (eds) Kidney Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-17903-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17903-2_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17902-5

  • Online ISBN: 978-3-319-17903-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics