Skip to main content

Statistical Learning Approach for Wind Speed Distribution Mapping: The UK as a Case Study

  • Chapter
  • First Online:
AGILE 2015

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Wind resource assessment is fundamental when selecting a site for wind energy projects. Wind speed is influenced by a plethora of environmental factors and understanding its spatial variability is key for determining the economic viability of a site. Deterministic estimation methods, which are based on physics, represent the industry standard in wind-speed mapping. Over the years, these methods have proven capable of estimating wind speed with a relatively high accuracy. However measuring stations, which provide the starting data for all wind speed estimations, are often located at a distance from each other, in some cases, tens of kilometres or more. This adds an unavoidable level of uncertainty to the estimates, which deterministic methods fail to take into account. For this reason, even though there are ways of determining the overall uncertainty of the estimation, e.g. cross-validation, deterministic methods do not provide means of assessing the site-specific uncertainty. This paper introduces a statistical method for estimating wind speed, based on spatial statistics. In particular, we present a statistical learning approach, based on ensembles of regression trees, to estimate both the wind distribution in specific locations and to assess the site-specific uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, S. K., & Kalla, S. L. (1996). A generalized gamma distribution and its application in reliability. Communications in Statistics. Theory and Methods, 25, 201–210.

    Article  Google Scholar 

  • Akpinar, E. K., & Akpinar, S. (2005). An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics. Energy Conversion and Management, 46, 1848–1867.

    Article  Google Scholar 

  • Beaucage, P., Brower, M. C., & Tensen, J. (2014). Evaluation of four numerical wind flow models for wind resource mapping. Wind Energy, 17(2), 197–208.

    Article  Google Scholar 

  • Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  • Cellura, M., Cirrincione, G., Marvuglia, A., et al. (2008a). Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis. Renewable Energy, 33, 1237–1250.

    Article  Google Scholar 

  • Cellura, M., Cirrincione, G., Marvuglia, A., et al. (2008b). Wind speed spatial estimation for energy planning in Sicily: A neural kriging application. Renewable Energy, 33, 1251–1266.

    Article  Google Scholar 

  • Center N.L.P.D.A.A. (2011). ASTER L1B. USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.

    Google Scholar 

  • Chan, J. C. W., & Paelinckx, D. (2008). Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112, 2999–3011.

    Article  Google Scholar 

  • Climate Change Act (2008). http://www.legislation.gov.uk/ukpga/2008/27/contents

  • Conrad, O. (2007). SAGA—Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen. Mathematisch-Naturwissenschaftlichen Fakultäten vol. Ph.D. University of Göttingen.

    Google Scholar 

  • Cutler, D. R., Edwards, T. C, Jr, Beard, K. H., et al. (2007). Random forests for classification in ecology. Ecology, 88, 2783–2792.

    Article  Google Scholar 

  • EEA Corine Land Cover. (2006): http://www.eea.europa.eu/publications/COR0-landcover

  • Foresti, L., Tuia, D., Kanevski, M., & Pozdnoukhov, A. (2011). Learning wind fields with multiple kernels. Stochastic Environmental Research and Risk Assessment, 25(1), 51–66.

    Article  Google Scholar 

  • Gass, V., Strauss, F., Schmidt, J., et al. (2011). Assessing the effect of wind power uncertainty on profitability. Renewable and Sustainable Energy Reviews, 15, 2677–2683.

    Article  Google Scholar 

  • Gasset, N., Landry, M., & Gagnon, Y. (2012). A comparison of wind flow models for wind resource assessment in wind energy applications. Energies, 5(11), 4288–4322.

    Article  Google Scholar 

  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27, 294–300.

    Article  Google Scholar 

  • Grassi, S., Chokani, N., & Abhari, R. (2012). Large scale technical and economic assessment of wind energy potential with a GIS tool: Case study Iowa. Energy Policy, 45, 58–73.

    Article  Google Scholar 

  • Grimm, R., Behrens, T., Märker, M., et al. (2008). Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using random forests analysis. Geoderma, 146, 102–113.

    Article  Google Scholar 

  • Gsänger, S., & Pitteloud, J. D. (2012). World wind energy association WWEA.

    Google Scholar 

  • Hansen, M., Dubayah, R., & Defries, R. (1996). Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing, 17, 1075–1081.

    Article  Google Scholar 

  • Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1983). Understanding robust and exploratory data analysis (Vol. 3). New York: Wiley.

    Google Scholar 

  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749.

    Article  Google Scholar 

  • Jackson, P. S., & Hunt, J. C. R. (1975). Turbulent wind flow over a low hill. Quarterly Journal of the Royal Meteorological Society, 101(430), 929–955.

    Article  Google Scholar 

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer.

    Book  Google Scholar 

  • Jenkins, G. J., Perry, M. C., & Prior, M. J. (2008). The climate of the United Kingdom and recent trends. Exeter, UK: Met Office Hadley Centre.

    Google Scholar 

  • Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques.

    Google Scholar 

  • Kwon, S. D. (2010). Uncertainty analysis of wind energy potential assessment. Applied Energy, 87, 856–865.

    Article  Google Scholar 

  • Landberg, L., Myllerup, L., Rathmann, O., et al. (2003). Wind resource estimation—An overview. Wind Energy, 6, 261–271.

    Article  Google Scholar 

  • Luo, W., Taylor, M. C., & Parker, S. R. (2008). A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. International Journal of Climatology, 28, 947–959.

    Article  Google Scholar 

  • Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind characteristics and resources. In Wind energy explained—Theory, design and application (2nd ed., pp. 43–45). New York: Wiley.

    Google Scholar 

  • Meng, Q., Liu, Z., & Borders, B. E. (2013). Assessment of regression kriging for spatial interpolation–comparisons of seven GIS interpolation methods. Cartography and Geographic Information Science, 40, 28–39.

    Article  Google Scholar 

  • Met Office. (2012). Met office integrated data archive system (MIDAS) land and marine surface stations data (1853-current). NCAS British Atmospheric Data Centre: http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0

  • MM5 Community Model (2015). http://www.mmm.ucar.edu/mm5/overview.html

  • Munteanu, I., Cutululis, N. A., Bratcu, A. I., et al. (2008). Optimal control of wind energy systems: Towards a global approach. New York: Springer.

    Google Scholar 

  • Pinson, P. (2006). Estimation of the uncertainty in wind power forecasting. Thesis/dissertation.

    Google Scholar 

  • Ray, M. L., Rogers, A. L., & McGowan, J. G. (2006) Analysis of wind shear models and trends in different terrain. In: Proceedings American Wind Energy Association Windpower.

    Google Scholar 

  • REN21. (2012). Renewables 2012 global status report.

    Google Scholar 

  • Rogers, A. L., Manwell, J. F., & Ellis, A. F. (2005) Wind shear over forested areas. In Proceedings of the 43rd American Institute of Aeronautics and Astronautics Aerospace, Science Meeting.

    Google Scholar 

  • Schmidli, J., Billings, B., Chow, F. K., et al. (2010). Intercomparison of mesoscale model simulations of the daytime valley wind system. Monthly Weather Review, 139, 1389–1409.

    Article  Google Scholar 

  • Snel, H. (1998). Review of the present status of rotor aerodynamics. Wind Energy, 1(1), 46–69.

    Article  Google Scholar 

  • Susumu, S., Ohsawa, T., & Yatsu, K. (2009). A study on the ability of mesoscale model MM5 for offshore wind resource assessment in Japanese coastal waters. In European Wind Energy Conference EWEC.

    Google Scholar 

  • VanLuvanee, D., et al. (2009). Comparison of WAsP, MS-Micro/3, CFD, NWP, and analytical methods for estimating site-wide wind speeds. In: Presentation from AWEA wind, 2009.

    Google Scholar 

  • WAsP (2015). http://www.wasp.dk/

  • Wiesmeier, M., Barthold, F., Blank, B., et al. (2011). Digital mapping of soil organic matter stocks using random forest modeling in a semi-arid steppe ecosystem. Plant and Soil, 340, 7–24.

    Article  Google Scholar 

  • WRF Model (2015). http://www.wrf-model.org/index.php

  • Yim, S. H. L., Fung, J. C. H., Lau, A. K. H., et al. (2007). Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system. Journal of Geophysical Research: Atmospheres, 112(D5), 2156–2202.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the UK Meteorological Office for providing the wind speed data for this research and some of the covariates. Other data providers we would like to thank are: NASA for the Aster DTM and the EU for the land-cover raster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Veronesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Veronesi, F., Grassi, S., Raubal, M., Hurni, L. (2015). Statistical Learning Approach for Wind Speed Distribution Mapping: The UK as a Case Study. In: Bacao, F., Santos, M., Painho, M. (eds) AGILE 2015. Lecture Notes in Geoinformation and Cartography. Springer, Cham. https://doi.org/10.1007/978-3-319-16787-9_10

Download citation

Publish with us

Policies and ethics