Skip to main content

BWM*: A Novel, Provable, Ensemble-Based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

Abstract

Current dynamic programming protein design algorithms that exploit the optimal substructure induced by sparse energy functions compute only the Global Minimum Energy Conformation (GMEC). This disproportionately favors the sequence of a single, static conformation and overlooks better sequences with multiple low-energy conformations. We propose a novel, provable, dynamic programming algorithm called Branch-Width Minimization \(^*\) (BWM\(^*\)) to enumerate a gap-free ensemble of conformations in order of increasing energy. Given a branch-decomposition of branch-width \(w\) for an \(n\)-residue protein design with at most \(q\) discrete side-chain conformations per residue, BWM\(^*\) returns the sparse GMEC in O(\(nw^2q^{\frac{3}{2}w}\)) time, and enumerates each additional conformation in O(\(n\log q\)) time. BWM\(^*\) outperforms the classical search algorithm A\(^*\) in 49 of 67 protein design problems, computing the full ensemble or a close approximation up to two orders of magnitude faster. Performance of BWM\(^*\) can be predicted cheaply beforehand, allowing selection of the most efficient algorithm for each design problem.

J.D. Jou and S. Jain contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H.L., et al.: Discrete Mathematics 306(3), 337–350 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, C.-Y., et al.: PNAS 106(10), 3764–3769 (2009)

    Article  Google Scholar 

  3. Cook, W., Seymour, P.: INFORMS Jour. 15(3), 233–248 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Desjarlais, J.R., Handel, T.M.: Protein Science 4(10), 2006–2018 (1995)

    Article  Google Scholar 

  5. Desmet, J., et al.: Proteins 48(1), 31–43 (2002)

    Article  Google Scholar 

  6. Donald, B.R.: Algorithms in Structural Molecular Biology. The MIT Press (2011)

    Google Scholar 

  7. Fomin, F.V., Thilikos, D.M.: SODA 2003, pp. 168–177. ACM-SIAM (2003)

    Google Scholar 

  8. Fleishman, S.J., et al.: PLoS ONE 6(6), e20161 (2011)

    Article  Google Scholar 

  9. Frey, K.M., et al.: PNAS 107(31), 13707–13712 (2010)

    Article  Google Scholar 

  10. Gainza, P., et al.: PLoS Comp. Biology 8(1), e1002335 (2012)

    Article  Google Scholar 

  11. Gainza, P., et al.: Methods in Enzymology 523, 87–107 (2013)

    Article  Google Scholar 

  12. Georgiev, I., et al.: Retrovirology 9(Suppl. 2), P50 (2012)

    Article  MathSciNet  Google Scholar 

  13. Georgiev, I., Donald, B.R.: Bioinformatics 23(13), i185–i194 (2007)

    Article  Google Scholar 

  14. Georgiev, I.S., et al.: Jour. of Immunology, 1302515 (2014)

    Google Scholar 

  15. Goldstein, R.F.: Biophysical Jour. 66(5), 1335–1340 (1994)

    Article  Google Scholar 

  16. Gorczynski, M.J., et al.: Chem. and Biology 14(10), 1186–1197 (2007)

    Article  Google Scholar 

  17. Hicks, I.V., et al.: INFORMS New Orleans 2005, 129 (2005)

    Google Scholar 

  18. Hlineny, P., et al.: The Computer Jour. (2007)

    Google Scholar 

  19. Jiang, X., et al.: Protein Science 9(2), 403–416 (2000)

    Article  Google Scholar 

  20. Jones, D.T., et al.: Protein Science 3(4), 567–574 (1994)

    Article  Google Scholar 

  21. Jou, J.D., Jain, S., Georgiev, I., Donald, B.R.: Supplementary Information: BWM*: A Novel, Provable, Ensemble-based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design (2015). http://www.cs.duke.edu/donaldlab/Supplementary/recomb15/bwmstar

  22. Kaufmann, K.W., et al.: Biochemistry 49(14), 2987–2998 (2010)

    Article  Google Scholar 

  23. Kilambi, K.P., Gray, J.J.: Biophysical Jour. 103(3), 587–595 (2012)

    Article  Google Scholar 

  24. King, C., et al.: PNAS 111(23), 8577–8582 (2014)

    Article  Google Scholar 

  25. Kingsford, C.L., et al.: Bioinformatics 21(7), 1028–1039 (2005)

    Article  Google Scholar 

  26. Koehl, P., Delarue, M.: Jour. of Molecular Biology 239(2), 249–275 (1994)

    Article  Google Scholar 

  27. Kortemme, T., et al.: Jour. of Molecular Biology 326(4), 1239–1259 (2003)

    Article  Google Scholar 

  28. Krivov, G.G., et al.: Proteins 77(4), 778–795 (2009)

    Article  Google Scholar 

  29. Kuhlman, B., Baker, D.: PNAS 97(19), 10383–10388 (2000)

    Article  Google Scholar 

  30. Lazaridis, T., Karplus, M.: Proteins 35(2), 133–152 (1999)

    Article  Google Scholar 

  31. Leach, A.R., Lemon, A.P.: Proteins 33(2), 227–239 (1998)

    Article  Google Scholar 

  32. Leaver-Fay, A., et al.: Pacific Symposium on Biocomputing, 16–27 (2005)

    Google Scholar 

  33. Leaver-Fay, A., et al.: Methods in Enzymology 487, 545–574 (2011)

    Article  Google Scholar 

  34. Lee, C., Subbiah, S.: Jour. of Molecular Biology 217(2), 373–388 (1991)

    Article  Google Scholar 

  35. Lilien, R.H., et al.: Jour. of Comp. Biology 12(6), 740–761 (2005)

    Article  Google Scholar 

  36. Lovell, S.C., et al.: Proteins 40(3), 389–408 (2000)

    Article  Google Scholar 

  37. Privett, H.K., et al.: PNAS 109(10), 3790–3795 (2012)

    Article  Google Scholar 

  38. Roberts, K.E., et al.: PLoS Comp. Biology 8(4), e1002477 (2012)

    Article  Google Scholar 

  39. Robertson, T.A., Varani, G.: Proteins 66(2), 359–374 (2007)

    Article  Google Scholar 

  40. Rudicell, R.S., et al.: Jour. of Virology 88(21), 12669–12682 (2014)

    Article  Google Scholar 

  41. Silver, N.W., et al.: Jour. of Chem. Theory and Comp. 9(11), 5098–5115 (2013)

    Article  Google Scholar 

  42. Stevens, B.W., et al.: Biochemistry 45(51), 15495–15504 (2006)

    Article  Google Scholar 

  43. Xu, J., Berger, B.: Jour. of ACM 53, 533–557 (2006)

    Article  MathSciNet  Google Scholar 

  44. Zhang, Z., Lange, O.F.: PLoS ONE 8(8), e72096 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce R. Donald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jou, J.D., Jain, S., Georgiev, I., Donald, B.R. (2015). BWM*: A Novel, Provable, Ensemble-Based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics