Skip to main content

KGSrna: Efficient 3D Kinematics-Based Sampling for Nucleic Acids

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9029))

Abstract

Noncoding ribonucleic acids (RNA) play a critical role in a wide variety of cellular processes, ranging from regulating gene expression to post-translational modification and protein synthesis. Their activity is modulated by highly dynamic exchanges between three-dimensional conformational substates, which are difficult to characterize experimentally and computationally. Here, we present an innovative, entirely kinematic computational procedure to efficiently explore the native ensemble of RNA molecules. Our procedure projects degrees of freedom onto a subspace of conformation space defined by distance constraints in the tertiary structure. The dimensionality reduction enables efficient exploration of conformational space. We show that the conformational distributions obtained with our method broadly sample the conformational landscape observed in NMR experiments. Compared to normal mode analysis-based exploration, our procedure diffuses faster through the experimental ensemble while also accessing conformational substates to greater precision. Our results suggest that conformational sampling with a highly reduced but fully atomistic representation of noncoding RNA expresses key features of their dynamic nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Bluwi, I., Siméon, T., Cortés, J.: Motion planning algorithms for molecular simulations: A survey. Computer Science Review 6(4), 125–143 (2012)

    Article  MATH  Google Scholar 

  2. Altona, C., Sundaralingam, M.: Conformational analysis of the sugar ring in nucleosides and nucleotides. new description using the concept of pseudorotation. Journal of the American Chemical Society 94(23), 8205–8212 (1972)

    Article  Google Scholar 

  3. Bernauer, J., Huang, X., Sim, A.Y.L., Levitt, M.: Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation. RNA 17(6), 1066–1075 (2011)

    Article  Google Scholar 

  4. Canutescu, A.A., Dunbrack, R.L.: Cyclic coordinate descent: A robotics algorithm for protein loop closure. Protein Science 12(5), 963–972 (2003)

    Article  Google Scholar 

  5. Chennubhotla, C., Rader, A.J., Yang, L.-W., Bahar, I.: Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Physical Biology 2(4), S173 (2005)

    Article  Google Scholar 

  6. Cléry, A., Blatter, M., Allain, F.H.-T.: RNA recognition motifs: boring? Not quite. Current Opinion in Structural Biology 18(3), 290–298 (2008)

    Article  Google Scholar 

  7. Cooper, T.A., Wan, L., Dreyfuss, G.: RNA and disease. Cell 136(4), 777–793 (2009)

    Article  Google Scholar 

  8. Coutsias, E.A., Seok, C., Jacobson, M.P., Dill, K.A.: A kinematic view of loop closure. Journal of computational chemistry 25(4), 510–528 (2004)

    Article  Google Scholar 

  9. Cruz, J.A., Westhof, E.: The dynamic landscapes of RNA architecture. Cell 136(4), 604–609 (2009)

    Article  Google Scholar 

  10. Das, R., Baker, D.: Automated de novo prediction of native-like RNA tertiary structures. Proc of the Nat Acad of Sciences 104(37), 14664–14669 (2007)

    Article  Google Scholar 

  11. Dorsett, Y., Tuschl, T.: siRNAs: applications in functional genomics and potential as therapeutics. Nature Reviews Drug Discovery 3(4), 318–329 (2004)

    Article  Google Scholar 

  12. Fonseca, R., Pachov, D.V., Bernauer, J., van den Bedem, H.: Characterizing RNA ensembles from NMR data with kinematic models. Nucleic Acids Res 42(15), 9562–9572 (2014)

    Article  Google Scholar 

  13. Frenkel, D., Smit, B.: Understanding molecular simulation: From algorithms to applications, vol. 1. Academic press (2001)

    Google Scholar 

  14. Guo, P.: The emerging field of RNA nanotechnology. Nature nanotechnology 5(12), 833–842 (2010)

    Article  Google Scholar 

  15. Halperin, D., Overmars, M.H.: Spheres, molecules, and hidden surface removal. In: Proc. of the Tenth Ann Symp on Comp Geom, pp. 113–122. ACM (1994)

    Google Scholar 

  16. Ho, B.K., Coutsias, E.A., Seok, C., Dill, K.A.: The flexibility in the proline ring couples to the protein backbone. Protein Science 14(4), 1011–1018 (2005)

    Article  Google Scholar 

  17. Kim, H., Abeysirigunawarden, S.C., Chen, M., Mayerle, K., Ragunathan, K., Luthey-Schulten, Z., Ha, T., Woodson, S.A.: Protein-guided RNA dynamics during early ribosome assembly. Nature 506(7488), 334–338 (2014)

    Article  Google Scholar 

  18. Landau, D.P., Binder, K.: A guide to Monte Carlo simulations in statistical physics. Cambridge University Press (2009)

    Google Scholar 

  19. Leontis, N.B., Lescoute, A., Westhof, E.: The building blocks and motifs of RNA architecture. Current Opinion in Structural Biology 16(3), 279–287 (2006)

    Article  Google Scholar 

  20. Leulliot, N., Varani, G.: Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40(27), 7947–7956 (2001)

    Article  Google Scholar 

  21. Levitt, M., Warshel, A.: Extreme conformational flexibility of the furanose ring in DNA and RNA. J. American Chem. Soc. 100(9), 2607–2613 (1978)

    Article  Google Scholar 

  22. Lipfert, J., Das, R., Chu, V.B., Kudaravalli, M., Boyd, N., Herschlag, D., Doniach, S.: Structural transitions and thermodynamics of a glycine-dependent riboswitch from vibrio cholerae. Journal of molecular biology 365(5), 1393–1406 (2007)

    Article  Google Scholar 

  23. Lopéz-Blanco, J.R., Garzón, J.I., Chacón, P.: iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics 27(20), 2843–2850 (2011)

    Article  Google Scholar 

  24. Ma, J.: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13(3), 373–380 (2005)

    Article  Google Scholar 

  25. Richardson, J.S., et al.: RNA backbone: Consensus all-angle conformers and modular string nomenclature (an RNA ontology consortium contribution). RNA 14(3), 465–481 (2008)

    Article  Google Scholar 

  26. Rother, K., Rother, M., Skiba, P., Bujnicki, J.M.: Automated modeling of rna 3d structure. In RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods, pp. 395–415. Springer (2014)

    Google Scholar 

  27. Schröder, G.F., Brunger, A.T., Levitt, M.: Combining efficient conformational sampling with a deformable elastic network model facilitates structure refinement at low resolution. Structure 15(12), 1630–1641 (2007)

    Article  Google Scholar 

  28. Thomas, S., Song, G., Amato, N.M.: Protein folding by motion planning. Physical Biology 2(4), S148 (2005)

    Article  Google Scholar 

  29. Ulrich, E.L., Akutsu, H., et al.: BioMagResBank. Nucleic Acids Res. 36(suppl 1), D402–D408 (2008)

    Google Scholar 

  30. van den Bedem, H., Fraser, J.S.: Integrative, dynamic structural biology at atomic resolution–it‘s about time. Nat. Meth. 12(4) (2015)

    Google Scholar 

  31. van den Bedem, H., Lotan, I., Latombe, J.-C., Deacon, A.M.: Real-space protein-model completion: an inverse-kinematics approach. Acta Crystallographica Section D: Biological Crystallography 61(1), 2–13 (2005)

    Article  Google Scholar 

  32. Wells, S., Menor, S., Hespenheide, B., Thorpe, M.F.: Constrained geometric simulation of diffusive motion in proteins. Physical Biology 2(4), S127 (2005)

    Article  Google Scholar 

  33. Yang, H., Jossinet, F., Leontis, N., Chen, J., Westbrook, L., Berman, H., Westhof, E.: Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 31(13), 3450–3460 (2003)

    Article  Google Scholar 

  34. Yao, P., Dhanik, A., Marz, N., Propper, R., Kou, C., Liu, G., van den Bedem, H., Latombe, J.-C., Halperin-Landsberg, I., Altman, R.B.: Efficient algorithms to explore conformation spaces of flexible protein loops. IEEE/ACM Trans. Comput. Biol. Bioinform. 5(4), 534–545 (2008)

    Article  Google Scholar 

  35. Yao, P., Zhang, L., Latombe, J.-C.: Sampling-based exploration of folded state of a protein under kinematic and geometric constraints. Proteins 80(1), 25–43 (2012)

    Article  Google Scholar 

  36. Zavodszky, M.I., Lei, M., Thorpe, M.F., Day, A.R., Kuhn, L.A.: Modeling correlated main-chain motions in proteins for flexible molecular recognition. Proteins 57(2), 243–261 (2004)

    Article  Google Scholar 

  37. Zhang, Q., Stelzer, A.C., Fisher, C.K., Al-Hashimi, H.M.: Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450(7173), 1263–1267 (2007)

    Article  Google Scholar 

  38. Zhou, J., Shu, Y., Guo, P., Smith, D.D., Rossi, J.J.: Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods 54(2), 284–294 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fonseca, R., van den Bedem, H., Bernauer, J. (2015). KGSrna: Efficient 3D Kinematics-Based Sampling for Nucleic Acids. In: Przytycka, T. (eds) Research in Computational Molecular Biology. RECOMB 2015. Lecture Notes in Computer Science(), vol 9029. Springer, Cham. https://doi.org/10.1007/978-3-319-16706-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16706-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16705-3

  • Online ISBN: 978-3-319-16706-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics