Skip to main content

Large Population Asymptotics for Interacting Diffusions in a Quenched Random Environment

  • Conference paper
  • First Online:
Book cover From Particle Systems to Partial Differential Equations II

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 129))

  • 1045 Accesses

Abstract

We review some recent results on large population behavior of interacting diffusions in a random environment. Emphasis is put on the quenched influence of the environment on the macroscopic behavior of the system (law of large numbers and fluctuations). We address the notion of (non-)self-averaging phenomenon for this class of models. A guiding thread in this survey is the Kuramoto synchronization model which has met in recent years a growing interest in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J, Ritort, F., Spigler R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Google Scholar 

  2. Aizenman, M., Lebowitz, J.L., Ruelle, D.: Some rigorous results on the Sherrington-Kirkpatrick spin glass model. Comm. Math. Phys. 112(1), 3–20 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arous, G.B., Guionnet, A.: Large deviations for Langevin spin glass dynamics. Probab. Theory Rel. 102(4), 455–509 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2, 10 (2012)

    Article  MathSciNet  Google Scholar 

  5. Balmforth, N.J., Sassi, R.: A shocking display of synchrony. Phys. D: Nonlinear Phenom. 143, 21–55 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben Arous, G., Guionnet, A.: Symmetric Langevin spin glass dynamics. Ann. Probab. 25(3), 1367–1422 (1997)

    Google Scholar 

  7. Berglund, N., Landon, D.: Mixed-mode oscillations and interspike interval statistics in the stochastic Fitzhugh-Nagumo model. Nonlinearity 25, 2303 (2012)

    Google Scholar 

  8. Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Statist. Phys. 138, 270–290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertini, L., Giacomin, G., Poquet, C.: Synchronization and random long time dynamics for mean-field plane rotators. Probab. Theory Rel. 1–61 (2013)

    Google Scholar 

  10. Billingsley, P.: Convergence of probability measures, Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  11. Blanchard, P., Röckner, M., Russo, F.: Probabilistic representation for solutions of an irregular porous media type equation. Ann. Probab. 38, 1870–1900 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bolley, F., Gentil, I., Guillin, A.: Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 1–17 (2012)

    Google Scholar 

  13. Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Rel. 137, 541–593 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cabana, T., Touboul, J.: Large deviations, dynamics and phase transitions in large stochastic heterogeneous neural networks (2013), arXiv:1302.6951

  15. Cáceres, M.J., Carrillo, J.A., Perthame, B.: Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states. J. Math. Neurosci. 1, 33 (2011)

    Article  Google Scholar 

  16. Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab. 17(26), 40 (2012)

    Google Scholar 

  17. Collet, F., Dai Pra, P., Sartori, E.: A simple mean field model for social interactions: dynamics, fluctuations, criticality. J. Stat. Phys. 139, 820–858 (2010)

    Google Scholar 

  18. Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media. J. Statist. Phys. 184735–184772 (1996)

    Google Scholar 

  19. Dawson, D.A., Gärtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Degond, P., Frouvelle, A., Liu, J.-G.: Macroscopic limits and phase transition in a system of self-propelled particles. J. Nonlin. Sci. 1–30 (2012)

    Google Scholar 

  21. Delarue, F., Inglis, J., Rubenthaler, S., Tanré, E.: Global solvability of a networked integrate-and-fire model of McKean-Vlasov type (2012), arXiv:1211.0299

  22. Delarue, F., Inglis, J., Rubenthaler, S., Tanré, E.: Particle systems with a singular mean-field self-excitation, Application to neuronal networks (2014), arXiv:1406.1151

  23. Ermentrout, G.B., Terman, D.H.: Mathematical foundations of neuroscience. Interdisciplinary Applied Mathematics, vol. 35. Springer, New York (2010)

    Google Scholar 

  24. Fathi, M.: A gradient flow approach to large deviations for diffusion processes (2014), arXiv:1405.3910

  25. Faugeras O., MacLaurin, J.: A large deviation principle for networks of rate neurons with correlated synaptic weights (2013), arXiv:1302.1029

  26. Fernandez, B., Méléard, S.: A Hilbertian approach for fluctuations on the McKean-Vlasov model. Stochast. Process. Appl. 71, 33–53 (1997)

    Article  MATH  Google Scholar 

  27. Gärtner, J.: On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137, 197–248 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Giacomin, G., Luçon, E., Poquet, C.: Coherence stability and effect of random natural frequencies in populations of coupled oscillators. J. Dynam. Differ. Equ. 26, 333–367 (2014)

    Article  MATH  Google Scholar 

  29. Giacomin, G., Pakdaman, K., Pellegrin, X.: Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators. Nonlinearity 25, 1247 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Godinho, D., Quininao, C.: Propagation of chaos for a sub-critical Keller-Segel model. Ann. Inst. H. Poincaré Probab. Statist. (2013), arXiv:1306.3831

  31. Gupta, S., Potters, M., Ruffo, S.: One-dimensional lattice of oscillators coupled through power-law interactions: Continuum limit and dynamics of spatial fourier modes. Phys. Rev. E 85, 066201 (2012)

    Google Scholar 

  32. Hitsuda, M., Mitoma, I.: Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions. J. Multivar. Anal. 19, 311–328 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)

    Article  MATH  Google Scholar 

  34. Jourdain, B., Malrieu, F.: Propagation of chaos and Poincaré inequalities for a system of particles interacting through their CDF. Ann. Appl. Probab. 18, 1706–1736 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jourdain, B., Méléard, S.: Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist. 34, 727–766 (1998)

    Article  MATH  Google Scholar 

  36. Jourdain, B., Reygner, J.: Capital distribution and portfolio performance in the mean-field atlas model, to appear in Annals of Finance (2014), arXiv:1312.5660

  37. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto). Lecture Notes in Physics, vol. 39, pp. 420–422. Springer, Berlin (1975)

    Google Scholar 

  38. Louca, S., Atay, F.M.: Stationary states in infinite networks of spiking oscillators with noise. SIAM J. Appl. Dyn. Syst. 12, 415–449 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Luçon, E.: Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electr. J. Prob. 16, 792–829 (2011)

    MATH  Google Scholar 

  40. Luçon, E.: Large time asymptotics for the fluctuation SPDE in the Kuramoto synchronization model. J. Funct. Anal. 266, 6372–6417 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  41. Luçon, E., Stannat, W.: Mean field limit for disordered diffusions with singular interactions. Ann. Appl. Probab. 24, 1946–1993 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Malrieu, F.: Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13, 540–560 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Maródi, M., d’Ovidio, F., Vicsek, T.: Synchronization of oscillators with long range interaction: phase transition and anomalous finite size effects. Phys. Rev. E, 66, 011109 (2002)

    Google Scholar 

  44. McKean Jr, H.P.: Propagation of chaos for a class of non-linear parabolic equations. In: Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic University (1967) pp. 41–57. Air Force Office Sci. Res, Arlington, Va (1967)

    Google Scholar 

  45. Méléard, S., Roelly, S.: Sur les convergences étroite ou vague de processus à valeurs mesures. C. R. Acad. Sci. Paris Sér. I Math. 317, 785–788 (1993)

    Google Scholar 

  46. Oelschläger, K.: A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw. Gebiete 69, 279–322 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  47. Omelchenko, I., Maistrenko, Y., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)

    Google Scholar 

  48. Pastur, L., Shcherbina, M.: Absence of self-averaging of the order parameter in the Sherrington-Kirkpatrick model. J. Stat. Phys. 62, 1–19 (1991)

    Article  MathSciNet  Google Scholar 

  49. Roelly-Coppoletta, S.: A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17, 43–65 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sakaguchi, H., Shinomoto, S., Kuramoto, Y.: Phase transitions and their bifurcation analysis in a large population of active rotators with mean-field coupling. Progr. Theoret. Phys. 79, 600–607 (1988)

    Article  MathSciNet  Google Scholar 

  51. Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Statist. Phys. 63, 613–635 (1991)

    Article  MathSciNet  Google Scholar 

  52. Sznitman, A.-S.: Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56, 311–336 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  53. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX–1989, Lecture Notes in Mathematics, vol. 146, pp. 4165–4251. Springer, Berlin (1991)

    Google Scholar 

  54. Touboul, J.: Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149, 569–597 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  55. Wainrib G., Touboul, J.: Topological and dynamical complexity of random neural networks. Phys. Rev. Lett. 110, 118101 (2013)

    Google Scholar 

Download references

Acknowledgments

One of the articles reviewed here [41] was written at the Technische Universität of Berlin and was supported by the BMBF, FKZ 01GQ 1001B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Luçon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Luçon, E. (2015). Large Population Asymptotics for Interacting Diffusions in a Quenched Random Environment. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations II. Springer Proceedings in Mathematics & Statistics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-319-16637-7_8

Download citation

Publish with us

Policies and ethics