Skip to main content

Risk Quantification of Multigenic Conditions for SNP Array Based Direct-to-Consumer Genomic Services

  • Conference paper
  • 3035 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Abstract

Genome wide association studies (GWAS) are typically designed as case-control studies, collecting thousands of sick and healthy individuals, genotyping hundreds of thousands of SNPs, and documenting the SNPs which are more abundant in one group or the other. Direct-to-consumer genetic testing has opened the possibility for a regular person to receive data about his/her genotype, but the validity of risk assessment procedures and the final genetic risk estimate have been questioned. Many authors have discussed the advantage of use of the asymptotic Bayes factor (ABF) to measure the strength of SNP/trait associations, over the use of p-values. We propose a ABF based heuristic to filter-our and select SNP/trait associations to be used in multigenic risk assessment.

A raw genotype result from the 23andMe web service was merged with the GWAS catalog, and SNP/trait associations were filtered and selected using the R programming language together with free and publicly available databases.

From the initial 3195 SNP/trait associations, only 425 remained after the initial filters on descent, replicated findings, qualitative trait and availability of the number of cases and controls in the study. Selecting only one SNP/trait association from repeated studies and studies done with proxy SNPs left us with 377 SNP/trait associations available for multigenic risk assessment. After excluding the associations with unsatisfying ABF, only 300 SNP/trait associations remain for the multigenic risk assessment.

Whatever the link between SNP/trait associations and final DTC multigenic risk assessment for a given trait is, the final value of a risk score is heavily influenced by the number, as well as strength of evidence for individual SNP/trait pairs that are used for calculation. The ABF provides an unambiguous and simple criterion for ranking and including SNP/trait associations in multigenic risk assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell, J.A., Fun, J., McCray, A.T.: Design of Genetics Home Reference: a new NLM consumer health resource. Journal of the American Medical Informatics Association 11(6), 439–447 (2004)

    Article  Google Scholar 

  2. Goldstein, D.B.: Common genetic variation and human traits. N. Engl. J. Med. 360(17), 1696–1698 (2009)

    Article  Google Scholar 

  3. Baptista, P.V.: Principles in genetic risk assessment. Ther. Clin. Risk Manag. 1(1), 15–20 (2005)

    Article  Google Scholar 

  4. Regaldo, A.: How a Wiki Is Keeping Direct-to-Consumer Genetics Alive (2014), http://www.technologyreview.com/featuredstory/531461/how-a-wiki-is-keeping-direct-to-consumer-genetics-alive/

  5. Sherry, S.T., et al.: dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29(1), 308–311 (2001)

    Article  MathSciNet  Google Scholar 

  6. Landrum, M.J., et al.: ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research, gkt1113 (2013)

    Google Scholar 

  7. Yang, Q., et al.: Using lifetime risk estimates in personal genomic profiles: estimation of uncertainty. The American Journal of Human Genetics 85(6), 786–800 (2009)

    Article  Google Scholar 

  8. Szoka, B. FDA Just Banned 23andMe’s DNA Testing Kits, and Users Are Fighting Back (2013), http://www.huffingtonpost.com/berin-szoka/fda-just-banned-23andmes-_b_4339182.html

  9. Jannot, A.-S., Ehret, G., Perneger, T.: P<5*10-8 has emerged as a standard of statistical significance for genome-wide association studies. Journal of Clinical Epidemiology (2015)

    Google Scholar 

  10. Zheng, G., Yuan, A., Jeffries, N.: Hybrid Bayes factors for genome-wide association studies when a robust test is used. Computational Statistics & Data Analysis 55(9), 2698–2711 (2011)

    Article  MathSciNet  Google Scholar 

  11. Zaykin, D.V., Zhivotovsky, L.A.: Ranks of Genuine Associations in Whole-Genome Scans. Genetics 171(2), 813–823 (2005)

    Article  Google Scholar 

  12. Wang, L., et al.: Bayes Factor Based on a Maximum Statistic for Case-Control Genetic Association Studies. Journal of Agricultural, Biological, and Environmental Statistics 17(4), 568–582 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kass, R.E., Raftery, A.E.: Bayes Factors. Journal of the American Statistical Association 90(430), 773–795 (1995)

    Article  MATH  Google Scholar 

  14. Wakefield, J.: Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33(1), 79–86 (2009)

    Article  Google Scholar 

  15. Sawcer, S.: Bayes factors in complex genetics. Eur. J. Hum. Genet. 18(7), 746–750 (2010)

    Article  Google Scholar 

  16. Stephens, M., Balding, D.J.: Bayesian statistical methods for genetic association studies. Nat. Rev. Genet. 10(10), 681–690 (2009)

    Article  Google Scholar 

  17. Wakefield, J.: A Bayesian measure of the probability of false discovery in genetic epidemiology studies. The American Journal of Human Genetics 81(2), 208–227 (2007)

    Article  MathSciNet  Google Scholar 

  18. 23andMe. 23andMe Web Service (2014), https://www.23andme.com/

  19. Welter, D., et al.: The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research 42(D1), D1001–D1006 (2014)

    Google Scholar 

  20. Carey, V.: gwascat: structuring and querying the NHGRI GWAS catalog (2013)

    Google Scholar 

  21. Wickham, H.: stringr: modern, consistent string processing. The R Journal 2(2), 38–40 (2010)

    Google Scholar 

  22. Burton, P.R., et al.: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145), 661–678 (2007)

    Article  Google Scholar 

  23. Evangelou, E., Ioannidis, J.P.: Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14(6), 379–389 (2013)

    Article  Google Scholar 

  24. Kraft, P., Zeggini, E., Ioannidis, J.P.: Replication in genome-wide association studies. Statistical Science: A Review Journal of the Institute of Mathematical Statistics 24(4), 561 (2009)

    Article  MathSciNet  Google Scholar 

  25. Johnson, A.D., et al.: SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24(24), 2938–2939 (2008)

    Article  Google Scholar 

  26. Team, R.C.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012) ISBN 3-900051-07-0

    Google Scholar 

  27. Gentleman, R.C., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5(10), R80 (2004)

    Article  Google Scholar 

  28. Wei, Z., et al.: From disease association to risk assessment: an optimistic view from genome-wide association studies on type 1 diabetes. PLoS Genet. 5(10), e1000678 (2009)

    Google Scholar 

  29. Barrett, J.: Why prediction is a risky business (2010), http://genomesunzipped.org/2010/08/why-prediction-is-a-risky-business.php

  30. Cummings, P.: The relative merits of risk ratios and odds ratios. Arch. Pediatr. Adolesc. Med. 163(5), 438–445 (2009)

    Article  Google Scholar 

  31. Wang, Z.: Converting Odds Ratio to Relative Risk in Cohort Studies with Partial Data Information. Journal of Statistical Software 55(5) (2013)

    Google Scholar 

  32. Nikaido, I., Tsuyuzaki, K., Morota, G.: meshr: Tools for conducting enrichment analysis of MeSH. R package version 1.2.4

    Google Scholar 

  33. Tsuyuzaki, K., et al.: How to use MeSH-related Packages (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bojić, S., Mandić-Rajčević, S. (2015). Risk Quantification of Multigenic Conditions for SNP Array Based Direct-to-Consumer Genomic Services. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics