Skip to main content

Cytochrome P450cin (CYP176A1)

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 851))

Abstract

Cytochrome P450cin (P450cin) (CYP176A1) is a bacterial P450 enzyme that catalyses the enantiospecific hydroxylation of 1,8-cineole to (1R)-6β-hydroxycineole when reconstituted with its natural reduction-oxidation (redox) partner cindoxin, E. coli flavodoxin reductase, and NADPH as a source of electrons. This catalytic system has become a useful tool in the study of P450s as not only can large quantities of P450cin be prepared and rates of oxidation up to 1,500 min−1 achieved, but it also displays a number of unusual characteristics. These include an asparagine residue in P450cin that has been found in place of the usual conserved threonine residue observed in most P450s. In general, this conserved threonine controls oxygen activation to create the potent ferryl (Fe(IV=O) porphyrin cation radical required for substrate oxidation. Another atypical characteristic of P450cin is that it utilises an FMN-containing redoxin (cindoxin) rather than a ferridoxin as is usually observed with other bacterial P450s (e.g. P450cam). This chapter will review what is currently known about P450cin and how this enzyme has provided a greater understanding of P450s in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Abbreviations: P450 or CYP cytochrome P450, Fld E. coli flavodoxin, FdR E. coli flavodoxin reductase, GC/MS gas chromatography/mass spectrometry, Pdx putidaredoxin, PdR putidaredoxin reductase, CPR NADPH-cytochrome P450 oxidoreductase, CdR cindoxin reductase, Cdx cindoxin, HPLC high-performance liquid chromatography, E 1 quinone/semiquinone, E 2 semiquinone/hydroquinone, EPR electron paramagnetic resonance, ENDOR electron nuclear double resonance.

  2. 2.

    There is no consistency for naming hydroxycineoles in the literature. In order to discuss stereochemistry we use descriptors α and β. Employing a plane that passes through C5, C6, C7 and C8 of the molecule (See Fig. 12.2), we term any substituents that lie below the plane α and any substituents that are above this plane β. Three new stereogenic centres at C1, C4 and C6 are created following the hydroxylation of the meso cineole at either one of the carbons that lie adjacent to the C1 bridgehead. To differentiate the entantiomers formed following oxidation we have described the pro-R carbon as the carbon atom that leads to the R-C1 isomer and the pro-S carbon as that leading to the S-C1 isomer.

References

  1. Guengerich FP (2005) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 377–530

    Chapter  Google Scholar 

  2. Ortiz de Montellano PR (ed) (2005) Cytochrome P450: structure, mechanism, and biochemistry. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  3. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-Å crystal-structure of Pseudomonas putida cytochrome P450. J Biol Chem 260:6122–6130

    Google Scholar 

  4. Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P450cam. J Mol Biol 195:687–700

    Article  CAS  PubMed  Google Scholar 

  5. Mueller EJ, Loida PJ, Sligar SG (1995) Twenty-five years of P450cam research. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 2nd edn. Plenum Press, New York, pp 83–124

    Chapter  Google Scholar 

  6. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet BM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  7. Poulos T (2005) Structural biology of heme monooxygenases. Biochem Biophys Res Commun 338:337–345

    Article  CAS  PubMed  Google Scholar 

  8. Whitehouse CJC, Bell SG, Wong LL (2012) P450BM3 (CYP102A1): connecting the dots. Chem Soc Rev 41:1218–1260

    Article  CAS  PubMed  Google Scholar 

  9. Deprez E, Di Primo C, Hui Bon Hoa G, Douzou P (1994) Effects of monovalent cations on cytochrome P-450 camphor evidence for preferential binding of potassium. FEBS Lett 347:207–210

    Article  CAS  PubMed  Google Scholar 

  10. Hawkes DB, Adams GW, Burlingame AL, Ortiz de Montellano PR, De Voss JJ (2002) Cytochrome P450cin (CYP176A), isolation, expression, and characterization. J Biol Chem 277:27725–27732

    Article  CAS  PubMed  Google Scholar 

  11. Kim D, Heo Y-S, Ortiz de Montellano PR (2008) Efficient catalytic turnover of cytochrome P450cam is supported by a T252N mutation. Arch Biochem Biophys 474:150–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Meharenna YT, Slessor KE, Cavaignac SM, Poulos TL, De Voss JJ (2008) The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in P450cin. J Biol Chem 283:10804–10812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Slessor KE, Farlow AJ, Cavaignac SM, Stok JE, De Voss JJ (2011) Oxygen activation by P450cin: protein and substrate mutagenesis. Arch Biochem Biophys 507:154–162

    Article  CAS  PubMed  Google Scholar 

  14. Kimmich N, Das A, Sevrioukova I, Meharenna Y, Sligar SG, Poulos TL (2007) Electron transfer between cytochrome P450cin and its FMN-containing redox partner, cindoxin. J Biol Chem 282:27006–27011

    Article  CAS  PubMed  Google Scholar 

  15. Hawkes DB, Slessor KE, Bernhardt PV, De Voss JJ (2010) Cloning, expression and purification of cindoxin, an unusual FMN-containing cytochrome P450 redox partner. ChemBioChem 11:1107–1114

    Article  CAS  PubMed  Google Scholar 

  16. Slessor KE, Stok JE, Cavaignac SM, Hawkes DB, Ghasemi Y, De Voss JJ (2010) Cineole biodegradation: molecular cloning, expression and characterisation of (1R)-6 β-hydroxycineole dehydrogenase from Citrobacter braakii. Bioorg Chem 38:81–86

    Article  CAS  PubMed  Google Scholar 

  17. Meharenna YT, Li H, Hawkes DB, Pearson AG, De Voss J, Poulos TL (2004) Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam. Biochemistry 43:9487–9494

    Article  PubMed  Google Scholar 

  18. Madrona Y, Tripathi S, Li H, Poulos TL (2012) Crystal structures of substrate-free and nitrosyl cytochrome P450cin: implications for O2 activation. Biochemistry 51:6623–6631

    Article  CAS  PubMed  Google Scholar 

  19. Ost T, Miles C, Munro A, Murdoch J, Reid G, Chapman S (2001) Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3. Biochemistry 40:13421–13429

    Article  CAS  PubMed  Google Scholar 

  20. Paine MJI, Scrutton NS, Munro AW, Gutierrez A, Roberts GCK, Wolf CR (2005) Electron transfer partners of cytochrome P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 115–148

    Chapter  Google Scholar 

  21. Lipscomb JD, Sligar SG, Namtvedt MJ, Gunsalus IC (1976) Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam. J Biol Chem 251:1116–1124

    CAS  PubMed  Google Scholar 

  22. Bernhardt R, Gunsalus IC (1992) Reconstitution of cytochrome P4502B4 (LM2) activity with camphor and linalool monooxygenase electron donors. Biochem Biophys Res Commun 187:310–317

    Article  CAS  PubMed  Google Scholar 

  23. Peterson JA, Graham-Lorence SE (1995) Bacterial P450s. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 2nd edn. Plenum Press, New York, pp 151–180

    Chapter  Google Scholar 

  24. Ullah AJ, Murray RI, Bhattacharyya PK, Wagner GC, Gunsalus IC (1990) Protein components of a cytochrome P-450 linalool 8-methyl hydroxylase. J Biol Chem 265:1345–1351

    CAS  PubMed  Google Scholar 

  25. Hannemann F, Bichet A, Ewen K, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochim Biophys Acta 1770:330–344

    Article  CAS  PubMed  Google Scholar 

  26. Ewen KM, Kleser M, Bernhardt R (2011) Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. Biochim Biophys Acta 1814:111–125

    Article  CAS  PubMed  Google Scholar 

  27. Waterman M, Jenkins C, Pikuleva I (1995) Genetically engineered bacterial cells and applications. Toxicol Lett 82:807–813

    Article  PubMed  Google Scholar 

  28. Holden M, Mayhew M, Bunk D, Roitberg A, Vilker V (1997) Probing the interactions of putidaredoxin with redox partners in camphor P450 5-monooxygenase by mutagenesis of surface residues. J Biol Chem 272:21720–21725

    Article  CAS  PubMed  Google Scholar 

  29. Pochapsky T, Ye X, Ratnaswamy G, Lyons T (1994) An NMR-derived model for the solution structure of oxidized putidaredoxin, a 2-Fe, 2-S ferredoxin from Pseudomonas. Biochemistry 33:6424–6432

    Article  CAS  PubMed  Google Scholar 

  30. Pochapsky TC, Lyons TA, Kazanis S, Arakaki T, Ratnaswamy G (1996) A structure-based model for cytochrome P450cam-putidaredoxin interactions. Biochimie 78:723–733

    Article  CAS  PubMed  Google Scholar 

  31. Madrona Y, Hollingsworth SA, Tripathi S, Fields JB, Rwigema J-CN, Tobias DJ, Poulos TL (2014) Crystal structure of cindoxin, the P450cin redox partner. Biochemistry 53:1435–1446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sligar S, Gunsalus I (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc Natl Acad Sci U S A 73:1078–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Aguey-Zinsou K-F, Bernhardt PV, De Voss JJ, Slessor KE (2003) Electrochemistry of P450cin: new insights into P450 electron transfer. Chem Commun 418–419

    Google Scholar 

  34. Stok JE, De Voss JJ (2000) Expression, purification, and characterization of Biol: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch Biochem Biophys 384:351–360

    Article  CAS  PubMed  Google Scholar 

  35. Hawkes DB (2003) Cytochrome P450cin, Ph.D. thesis, The University of Queensland, Brisbane

    Google Scholar 

  36. Slessor KE (2007) Cytochrome P450cin: chemistry and biochemistry, Ph.D. thesis, The University of Queensland, Brisbane

    Google Scholar 

  37. Martinis SA, Atkins WM, Stayton PS, Sligar SG (1989) A conserved residue of cytochrome P450 is involved in heme-oxygen stability and activation. J Am Chem Soc 111:9252–9253

    Article  CAS  Google Scholar 

  38. Andersen JF, Tatsuta K, Gunji H, Ishiyama T, Hutchinson CR (1993) Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis. Biochemistry 32:1905–1913

    Article  CAS  PubMed  Google Scholar 

  39. Xiang H, Tschirret-Guth RA, Ortiz de Montellano PR (2000) An A245T mutation conveys on cytochrome P450EryF the ability to oxidize alternative substrates. J Biol Chem 275:35999–36006

    Article  CAS  PubMed  Google Scholar 

  40. Clark JP, Miles CS, Mowat CG, Walkinshaw MD, Reid GA, Simon NDA, Chapman SK (2006) The role of Thr268 and Phe393 in cytochrome P450BM3. J Inorg Biochem 100:1075–1090

    Article  CAS  PubMed  Google Scholar 

  41. Atkins WM, Sligar SG (1988) The roles of active-site hydrogen-bonding in cytochrome P450cam as revealed by site-directed mutagenesis. J Biol Chem 263:18842–18849

    CAS  PubMed  Google Scholar 

  42. Deprez E, Gill E, Helms V, Wade RC, Hui Bon Hoa G (2002) Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin. J Inorg Biochem 91:597–606

    Article  CAS  PubMed  Google Scholar 

  43. Loida PJ, Sligar SG, Paulsen MD, Arnold GE, Ornstein RL (1995) Stereoselective hydroxylation of norcamphor by cytochrome P450cam−experimental verification of molecular-dynamics simulations. J Biol Chem 270:5326–5330

    Article  CAS  PubMed  Google Scholar 

  44. Slessor KE, Hawkes DB, Farlow A, Pearson AG, Stok JE, De Voss JJ (2012) An in vivo cytochrome P450cin (CYP176A1) catalytic system for metabolite production. J Mol Catal B: Enzym 79:15–20

    Article  CAS  Google Scholar 

  45. Slessor KE, Stok JE, Chow S, De Voss JJ, Unpublished results

    Google Scholar 

  46. Gerber NC, Sligar SG (1992) Catalytic mechanism of cytochrome-P450−evidence for a distal charge relay. J Am Chem Soc 114:8742–8743

    Article  CAS  Google Scholar 

  47. Gerber NC, Sligar SG (1994) A role for Asp-251 in cytochrome P450cam oxygen activation. J Biol Chem 269:4260–4266

    CAS  PubMed  Google Scholar 

  48. Stok JE, Yamada S, Farlow AJ, Slessor KE, De Voss JJ (2013) Cytochrome P450cin (CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s. Biochim Biophys Acta 1834:688–696

    Article  CAS  PubMed  Google Scholar 

  49. Davydov R, Macdonald IDG, Makris TM, Sligar SG, Hoffman BM (1999) EPR and ENDOR of catalytic intermediates in cryoreduced native and mutant oxy-cytochromes P450cam: mutation-induced changes in the proton delivery system. J Am Chem Soc 121:10654–10655

    Article  CAS  Google Scholar 

  50. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) Hydroxylation of camphor by-reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes. J Am Chem Soc 123:1403–1415

    Article  CAS  PubMed  Google Scholar 

  51. Benson DE, Suslick KS, Sligar SG (1997) Reduced oxy intermediate observed in D251N cytochrome P450cam. Biochemistry 36:5104–5107

    Article  CAS  PubMed  Google Scholar 

  52. Akhtar M, Corina D, Pratt J, Smith T (1976) Studies on removal of C-19 in estrogen biosynthesis using 18O2. J Chem Soc Chem Commun 854–856

    Google Scholar 

  53. Akhtar M, Njar VCO, Wright JN (1993) Mechanistic studies on aromatase and related C-C bond cleaving P450 enzymes. J Steroid Biochem 44:375–387

    Article  CAS  Google Scholar 

  54. Gantt SL, Denisov IG, Grinkova YV, Sligar SG (2009) The critical iron-oxygen intermediate in human aromatase. Biochem Biophys Res Commun 387:169–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Stevenson DE, Wright JN, Akhtar M (1988) Mechanistic consideration of P450 dependent enzymic reactions−studies on estriol biosynthesis. J Chem Soc Perkin Trans 1:2043–2052

    Article  Google Scholar 

  56. Ortiz de Montellano PR, De Voss JJ (2005) Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 183–245

    Chapter  Google Scholar 

  57. Carman RM, Fletcher MT (1983) Halogenated terpernoids. XX. The seven monochlorocineoles. Aust J Chem 36:1483–1493

    Article  CAS  Google Scholar 

  58. Macrae IC, Alberts V, Carman RM, Shaw IM (1979) Products of 1,8-cineole oxidation by a pseudomonad. Aust J Chem 32:917–922

    Article  CAS  Google Scholar 

  59. Williams DR, Trudgill PW, Taylor DG (1989) Metabolism of 1,8-cineole by a Rhodococcus species – ring cleavage reactions. J Gen Microbiol 135:1957–1967

    CAS  Google Scholar 

  60. Bell SG, Harford-Cross CF, Wong LL (2001) Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng 14:797–802

    Article  CAS  PubMed  Google Scholar 

  61. Blake JAR, Pritchard M, Ding SH, Smith GCM, Burchell B, Wolf CR, Friedberg T (1996) Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coli. FEBS Lett 397:210–214

    Article  CAS  PubMed  Google Scholar 

  62. Gillam EMJ, Wunsch RM, Ueng YF, Shimada T, Reilly PEB, Kamataki T, Guengerich FP (1997) Expression of cytochrome P450 3A7 in Escherichia coli: effects of 5′ modification and catalytic characterization of recombinant enzyme expressed in bicistronic format with NADPH-cytochrome P450 reductase. Arch Biochem Biophys 346:81–90

    Article  CAS  PubMed  Google Scholar 

  63. Kim D, Ortiz de Montellano PR (2009) Tricistronic overexpression of cytochrome P450cam, putidaredoxin, and putidaredoxin reductase provides a useful cell-based catalytic system. Biotechnol Lett 31:1427–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Parikh A, Gillam EMJ, Guengerich FP (1997) Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat Biotechnol 15:784–788

    Article  CAS  PubMed  Google Scholar 

  65. Schneider S, Wubbolts MG, Sanglard D, Witholt B (1998) Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for in vivo application of cytochrome P-450BM-3 monooxygenase. Appl Environ Microbiol 64:3784–3790

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Schneider S, Wubbolts MG, Sanglard D, Witholt B (1998) Production of chiral hydroxy long chain fatty acids by whole cell biocatalysis of pentadecanoic acid with an E. coli recombinant containing cytochrome P450BM-3 monooxygenase. Tetrahedron Asymmetry 9:2833–2844

    Article  CAS  Google Scholar 

  67. Peterson JA (1971) Camphor binding by Pseudomonas putida cytochrome P450. Arch Biochem Biophys 144:678–693

    Article  CAS  Google Scholar 

  68. Atkins W, Sligar S (1989) Molecular recognition in cytochrome P450 − Alteration of regioselective alkane hydroxylation via protein engineering. J Am Chem Soc 111:2715–2717

    Article  CAS  Google Scholar 

  69. Trudgill PW (1990) Microbial metabolism of monoterpenes – recent developments. Biodegradation 1:93–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge that this work was supported in part by ARC Grants DP110104455 and DP140103229.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. De Voss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stok, J.E., Slessor, K.E., Farlow, A.J., Hawkes, D.B., De Voss, J.J. (2015). Cytochrome P450cin (CYP176A1). In: Hrycay, E., Bandiera, S. (eds) Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology, vol 851. Springer, Cham. https://doi.org/10.1007/978-3-319-16009-2_12

Download citation

Publish with us

Policies and ethics