Skip to main content

Using Next-Generation Sequencing to Reveal Patterns of Chromosomal Alterations in Oral Verrucous Lesions

  • Chapter
Next Generation Sequencing in Cancer Research, Volume 2

Abstract

Oral verrucous carcinoma is considered to be a histological subtype of oral squamous cell carcinoma, which generally follows a more indolent clinical course. It presents a specific clinical challenge in that it can be difficult to reach a definitive diagnosis and harbours the potential to transform into the more aggressive squamous cell carcinoma. In this chapter, we will discuss the background of this disease and the potential and previous role of next-generation sequencing (NGS) in head and neck cancer. The use of low coverage NGS to produce copy number variation (CNV) data and demonstrate how different computational methods can be applied to that data to analyse patterns and identify targets of interest. The application of NGS to detect and determine the prevalence of human papillomavirus in this disease will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    Article  CAS  PubMed  Google Scholar 

  2. Scully C, Bagan JV. Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral Dis. 2009;15(6):388–99.

    Article  CAS  PubMed  Google Scholar 

  3. Bagan J, Sarrion G, Jimenez Y. Oral cancer: clinical features. Oral Oncol. 2010;46(6):414–7.

    Article  PubMed  Google Scholar 

  4. Kademani D. Oral cancer. Mayo Clin Proc. 2007;82(7):878–87.

    Article  PubMed  Google Scholar 

  5. Cabay RJ, Morton Jr TH, Epstein JB. Proliferative verrucous leukoplakia and its progression to oral carcinoma: a review of the literature. J Oral Pathol Med. 2007;36(5):255–61.

    Article  PubMed  Google Scholar 

  6. Zhu LK, et al. A clinicopathological study on verrucous hyperplasia and verrucous carcinoma of the oral mucosa. J Oral Pathol Med. 2012;41(2):131–5.

    Article  PubMed  Google Scholar 

  7. Califano J, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56(11):2488–92.

    CAS  PubMed  Google Scholar 

  8. Thomson PJ, et al. Epithelial cell proliferative activity and oral cancer progression. Cell Prolif. 2002;35:110–20.

    Article  PubMed  Google Scholar 

  9. Kushner J, Bradley G, Jordan RCK. Patterns of p53 and Ki-67 protein expression in epithelial dysplasia from the floor of the mouth. J Pathol. 1997;183(4):418–23.

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Moles MA, et al. Suprabasal expression of Ki-67 antigen as a marker for the presence and severity of oral epithelial dysplasia. Head Neck. 2000;22(7):658–61.

    Article  CAS  PubMed  Google Scholar 

  11. Shear M, Pindborg JJ. Verrucous hyperplasia of the oral-mucosa. Cancer. 1980;46(8):1855–62.

    Article  CAS  PubMed  Google Scholar 

  12. Wang YP, et al. Oral verrucous hyperplasia: histologic classification, prognosis, and clinical implications. J Oral Pathol Med. 2009;38(8):651–6.

    Article  PubMed  Google Scholar 

  13. Hsue SS, et al. Malignant transformation in 1458 patients with potentially malignant oral mucosal disorders: a follow-up study based in a Taiwanese hospital. J Oral Pathol Med. 2007;36(1):25–9.

    Article  PubMed  Google Scholar 

  14. Ho PS, et al. Malignant transformation of oral potentially malignant disorders in males: a retrospective cohort study. BMC Cancer. 2009;9:260.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ackerman LV. Verrucous carcinoma of the oral cavity. Surgery. 1948;23(4):670–8.

    CAS  PubMed  Google Scholar 

  16. Barnes L, Eveson JW, Reichart P, Sidransky D. WHO classification of tumours, pathology and genetics of head and neck tumours. Lyon: IARC Press; 2005. p. 174–5.

    Google Scholar 

  17. Pentenero M, et al. Distinctive chromosomal instability patterns in oral verrucous and squamous cell carcinomas detected by high-resolution DNA flow cytometry. Cancer. 2011;117(22):5052–7.

    Article  CAS  PubMed  Google Scholar 

  18. Ray JG, et al. Oral verrucous carcinoma – a misnomer? Immunohistochemistry based comparative study of two cases. BMJ Case Rep. 2011;2011.

    Google Scholar 

  19. Bagan J, et al. Proliferative verrucous leukoplakia: a concise update. Oral Dis. 2010;16(4):328–32.

    Article  CAS  PubMed  Google Scholar 

  20. Alkan A, et al. Oral verrucous carcinoma: a study of 12 cases. Eur J Dent. 2010;4(2):202–7.

    PubMed Central  PubMed  Google Scholar 

  21. Chung CH, et al. Oral precancerous disorders associated with areca quid chewing, smoking, and alcohol drinking in southern Taiwan. J Oral Pathol Med. 2005;34(8):460–6.

    Article  PubMed  Google Scholar 

  22. Stokes A, et al. Human papillomavirus detection in dysplastic and malignant oral verrucous lesions. J Clin Pathol. 2012;65(3):283–6.

    Article  PubMed  Google Scholar 

  23. Syrjänen KJ, Stina SS, Syrjänen M. Papillomavirus infections in human pathology. New York: Wiley; 2000.

    Google Scholar 

  24. Klieb HB, Raphael SJ. Comparative study of the expression of p53, Ki67, E-cadherin and MMP-1 in verrucous hyperplasia and verrucous carcinoma of the oral cavity. Head Neck Pathol. 2007;1(2):118–22.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Haimovich AD. Methods, challenges, and promise of next-generation sequencing in cancer biology. Yale J Biol Med. 2011;84(4):439–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Stransky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lui VWY, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3(7):761–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Conway C, et al. Next-generation sequencing for simultaneous determination of human papillomavirus load, subtype, and associated genomic copy number changes in tumors. J Mol Diagn. 2012;14(2):104–11.

    Article  CAS  PubMed  Google Scholar 

  30. Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11(10):685–96.

    Article  CAS  PubMed  Google Scholar 

  31. Wood HM, et al. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. Nucleic Acids Res. 2010;38(14):e151.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Woolgar JA, Triantafyllou A. Pitfalls and procedures in the histopathological diagnosis of oral and oropharyngeal squamous cell carcinoma and a review of the role of pathology in prognosis. Oral Oncol. 2009;45(4–5):361–85.

    Article  PubMed  Google Scholar 

  33. Eversole LR, Papanicolaou SJ. Papillary and verrucous lesions of oral mucous membranes. J Oral Med. 1983;38(1):3–13.

    CAS  PubMed  Google Scholar 

  34. Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009;10:80.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hayes JL, et al. Diagnosis of copy number variation by Illumina next generation sequencing is comparable in performance to oligonucleotide array comparative genomic hybridisation. Genomics. 2013;102(3):174–81.

    Article  CAS  PubMed  Google Scholar 

  36. Chiang DY, et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods. 2009;6(1):99–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gusnanto A, et al. Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics. 2012;28(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen DQ, Webber C, Ponting CP. Bias of selection on human copy-number variants. PLoS Genet. 2006;2(2):198–207.

    Article  CAS  Google Scholar 

  39. Sharp AJ, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77(1):78–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Poh CF, et al. A high frequency of allelic loss in oral verrucous lesions may explain malignant risk. Lab Invest. 2001;81(4):629–34.

    Article  CAS  PubMed  Google Scholar 

  41. Mohapatra G, et al. Glioma test array for use with formalin-fixed, paraffin-embedded tissue - Array comparative genomic hybridization correlates with loss of heterozygosity and fluorescence in situ hybridization. J Mol Diagn. 2006;8(2):268–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mermel CH, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Bass AJ, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Firestein R, et al. CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature. 2008;455(7212):547–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lin WM, et al. Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res. 2008;68(3):664–73.

    Article  CAS  PubMed  Google Scholar 

  46. Etemadmoghadam D, et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res. 2009;15(4):1417–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Weir BA, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450(7171):893–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chiang DY, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68(16):6779–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Northcott PA, et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet. 2009;41(4):465–72.

    Article  CAS  PubMed  Google Scholar 

  50. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics (vol 5, pg 997, 2006). Nat Rev Drug Discov. 2007;6(3):249.

    Article  Google Scholar 

  51. Li H, et al. SUZ12 Promotes Human Epithelial Ovarian Cancer by Suppressing Apoptosis via Silencing HRK. Mol Cancer Res. 2012;10(11):1462–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Berx G, et al. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat. 1998;12(4):226–37.

    Article  CAS  PubMed  Google Scholar 

  53. Onder TT, et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.

    Article  CAS  PubMed  Google Scholar 

  54. Vermeulen S, et al. Regulation of the invasion suppressor function of the cadherin/catenin complex. Pathol Res Pract. 1996;192(7):694–707.

    Article  CAS  PubMed  Google Scholar 

  55. Tamura T, et al. Minichromosome maintenance-7 and geminin are reliable prognostic markers in patients with oral squamous cell carcinoma: immunohistochemical study. J Oral Pathol Med. 2010;39(4):328–34.

    CAS  PubMed  Google Scholar 

  56. Chin D, et al. Novel markers for poor prognosis in head and neck cancer. Int J Cancer. 2005;113(5):789–97.

    Article  CAS  PubMed  Google Scholar 

  57. Chen YJ, et al. Genome-wide profiling of oral squamous cell carcinoma. J Pathol. 2004;204(3):326–32.

    Article  CAS  PubMed  Google Scholar 

  58. Samman M, et al. Next-generation sequencing analysis for detecting human papillomavirus in oral verrucous carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118(1):117–25. e1.

    Article  PubMed  Google Scholar 

  59. Coughlin CR, Scharer GH, Shaikh TH. Clinical impact of copy number variation analysis using high-resolution microarray technologies: advantages, limitations and concerns. Genome Med. 2012;4:80.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Ferrer I, et al. Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol. 2007;17(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  61. Bhattacharya A, et al. Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastasis. Clin Cancer Res. 2011;17(22):7024–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Smeets SJ, et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer. 2007;121(11):2465–72.

    Article  CAS  PubMed  Google Scholar 

  63. Miller CS, Johnstone BM. Human papillomavirus as a risk factor for oral squamous cell carcinoma: a meta-analysis, 1982–1997. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91(6):622–35.

    Article  CAS  PubMed  Google Scholar 

  64. Brady RC, Bernstein DI. Treatment of herpes simplex virus infections. Antiviral Res. 2004;61(2):73–81.

    Article  CAS  PubMed  Google Scholar 

  65. Everly D et al. 2012. Herpesviruses and cancer. In:Robertson ES. Cancer associated viruses. Springer-Verlag New York, pp. 133–167.

    Google Scholar 

  66. Ferreira DC, et al. Identification of herpesviruses types 1 to 8 and human papillomavirus in acute apical abscesses. J Endod. 2011;37(1):10–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manar Samman M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samman, M., Sethi, N. (2015). Using Next-Generation Sequencing to Reveal Patterns of Chromosomal Alterations in Oral Verrucous Lesions. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_19

Download citation

Publish with us

Policies and ethics