Skip to main content

The Role of Xylem Parenchyma in the Storage and Utilization of Nonstructural Carbohydrates

  • Chapter

Abstract

Ray and axial parenchyma cells are inherent components of secondary xylem in almost all woody plants. The proportion of wood parenchyma ranges typically between 5 and 10 % in gymnosperms and between 20 and 40 % in angiosperms. However, even higher proportions can be found in some angiosperms, particularly in the tropics. The role of xylem parenchyma in storage is often highlighted, with nonstructural carbohydrates (NSC) representing the most abundant reserves.

The NSC concentration in sapwood exhibits large differences across tree species and between different woody organs (roots, trunks, and branches). It is reasonable to expect that the potential to store NSC scales positively with the amount of ray and axial parenchyma in wood. Sapwood NSC exhibit complex dynamics throughout the season. This temporal variation in NSC concentration and their partitioning into starch and soluble sugars is closely tied to the physiological activity of ray and axial parenchyma cells.

In this chapter, we review our current knowledge of variation in ray and axial parenchyma anatomy and physiology and link it with NSC dynamics in wood. A better understanding of NSC accumulation patterns as driven by the parenchyma structure and physiology can be useful for estimating the total pool of NSC stored in forests and for predicting its dynamics under changing environmental conditions. Moreover, such synthesis can help to elucidate potential advantages associated with having high versus low wood parenchyma content.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alves G, Sauter JJ, Julien J-L, Fleurat-Lessard P, Améglio T, Guillot A et al (2001) Plasma membrane H+-ATPase, succinate and isocitrate dehydrogenases activities of vessel-associated cells in walnut trees. J Plant Physiol 158:1263–1271

    Google Scholar 

  • Alves G, Decourteix M, Fleurat-Lessard P, Sakr S, Bonhomme M, Améglio T et al (2007) Spatial activity and expression of plasma membrane H+-ATPase in stem xylem of walnut during dormancy and growth resumption. Tree Physiol 27:1471–1480

    Google Scholar 

  • Améglio T, Bodet C, Lacointe A, Cochard H (2002) Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiol 22:1211–1220

    PubMed  Google Scholar 

  • Améglio T, Decourteix M, Alves G, Valentin V, Sakr S, Julien J-L et al (2004) Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiol 24:785–793

    PubMed  Google Scholar 

  • Ashworth EN (1982) Properties of peach flower buds which facilitate supercooling. Plant Physiol 70:1475–1479

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ashworth E, Stirm V, Volenec J (1993) Seasonal variations in soluble sugars and starch within woody stems of Cornus sericea L. Tree Physiol 13:379–388

    CAS  PubMed  Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210

    CAS  PubMed  Google Scholar 

  • Barghoorn ES (1941) The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons-III. The elimination of rays. Bull Torrey Bot Club 68:317–325

    Google Scholar 

  • Barnett J, Cooper P, Bonner LJ (1993) The protective layer as an extension of the apoplast. IAWA J 14:163–171

    Google Scholar 

  • Bhat K, Bhat K, Dhamodaran T, et al. (1985) Wood and bark properties of branches of selected tree species growing in Kerala. KFRI research report, Kerala Forest Research Institute

    Google Scholar 

  • Bonhomme M, Peuch M, Améglio T, Rageau R, Guilliot A, Decourteix M et al (2010) Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol 30:89–102

    CAS  PubMed  Google Scholar 

  • Bonsen KJ, Kucera L (1990) Vessel occlusions in plants: morphological, functional and evolutionary aspects. IAWA Bull 11:393–399

    Google Scholar 

  • Borchert R, Pockman WT (2005) Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol 25:457–466

    PubMed  Google Scholar 

  • Braun H (1984) The significance of the accessory tissues of the hydrosystem for osmotic water shifting as the second principle of water ascent, with some thoughts concerning the evolution of trees. IAWA Bull 5:275–294

    Google Scholar 

  • Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154:1088–1095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burke M, Gusta L, Quamme H, Weiser C, Li P (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27:507–528

    Google Scholar 

  • Carbone MS, Czimczik CI, Keenan TF, Murakami PF, Pederson N, Schaberg PG et al (2013) Age, allocation and availability of nonstructural carbon in mature red maple trees. New Phytol 200:1145–1155

    CAS  PubMed  Google Scholar 

  • Carlquist S (1970) Wood anatomy of insular species of Plantago and the problem of raylessness. Bull Torrey Bot Club 97(6):353–361

    Google Scholar 

  • Carlquist S (1975) Wood anatomy of Onagraceae, with notes on alternative modes of photosynthate movement in dicotyledon woods. Ann Mo Bot Gard 62:386–424

    Google Scholar 

  • Carlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer, Berlin

    Google Scholar 

  • Cavender-Bares J (2005) Impacts of freezing on long distance transport in woody plants. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier, San Diego, pp 401–424

    Google Scholar 

  • Chaffey N, Barlow P (2001) The cytoskeleton facilitates a three-dimensional symplasmic continuum in the long-lived ray and axial parenchyma cells of angiosperm trees. Planta 213:811–823

    CAS  PubMed  Google Scholar 

  • Chapotin SM, Razanameharizaka JH, Holbrook NM (2006) A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae). Am J Bot 93:1251–1264

    PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    PubMed  Google Scholar 

  • Cocoletzi E, Angeles G, Sosa V, Patron A (2013) The chloroplasts and unlignified parenchyma of two tropical pioneer forest tree species (Urticaceae). Bot Sci 91:251–260

    Google Scholar 

  • Decourteix M, Alves G, Brunel N, Améglio T, Guilliot A, Lemoine R et al (2006) JrSUT1, a putative xylem sucrose transporter, could mediate sucrose influx into xylem parenchyma cells and be up-regulated by freeze-thaw cycles over the autumn-winter period in walnut tree (Juglans regia L.). Plant Cell Environ 29:36–47

    CAS  PubMed  Google Scholar 

  • Decourteix M, Alves G, Bonhomme M, Peuch M, Baaziz KB, Brunel N et al (2008) Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol 28:215–224

    CAS  PubMed  Google Scholar 

  • Domec J-C, Gartner B (2002) Age-and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiol 22:91–104

    CAS  PubMed  Google Scholar 

  • Essiamah S, Eschrich W (1985) Changes of starch content in the storage tissues of deciduous trees during winter and spring. IAWA Bull 6:97–106

    Google Scholar 

  • Evert RF (2006) Esau’s Plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Ewers FW, Améglio T, Cochard H, Beaujard F, Martignac M, Vandame M et al (2001) Seasonal variation in xylem pressure of walnut trees: root and stem pressures. Tree Physiol 21:1123–1132

    CAS  PubMed  Google Scholar 

  • Fahn A, Leshem B (1963) Wood fibres with living protoplasts. New Phytol 62:91–98

    Google Scholar 

  • Giese J-O, Herbers K, Hoffmann M, Klösgen RB, Sonnewald U (2005) Isolation and functional characterization of a novel plastidic hexokinase from Nicotiana tabacum. FEBS Lett 579:827–831

    CAS  PubMed  Google Scholar 

  • Hacke U, Sauter J (1996) Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia 105:435–439

    Google Scholar 

  • Hacke U, Sperry J (2003) Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant Cell Environ 26:303–311

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    PubMed  Google Scholar 

  • Hauch S, Magel E (1998) Extractable activities and protein content of sucrose-phosphate synthase, sucrose synthase and neutral invertase in trunk tissues of Robinia pseudoacacia L. are related to cambial wood production and heartwood formation. Planta 207:266–274

    CAS  Google Scholar 

  • Hearn DJ (2009) Descriptive anatomy and evolutionary patterns of anatomical diversification in Adenia (Passifloraceae). Aliso J Syst Evol Bot 27:13–38

    Google Scholar 

  • Hill S, Waterhouse J, Field E, Switsur V, Ap RT (1995) Rapid recycling of triose phosphates in oak stem tissue. Plant Cell Environ 18:931–936

    CAS  Google Scholar 

  • Hoch G, Richter A, Körner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    CAS  Google Scholar 

  • Jang J-C, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419

    PubMed  Google Scholar 

  • Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC (2012) Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci 195:48–53

    CAS  PubMed  Google Scholar 

  • Koch P (1985) Utilization of hardwoods growing on southern pine sites. U.S. Dept. of Agriculture, Forest Service, Washington, DC

    Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Google Scholar 

  • Kozlowski T (1992) Carbohydrate sources and sinks in woody plants. Bot Rev 58:107–222

    Google Scholar 

  • Kramer PJ, Kozlowski TT (1979) Physiology of woody plants. Academic, New York

    Google Scholar 

  • Kribs DA (1937) Salient lines of structural specialization in the wood parenchyma of dicotyledons. Bull Torrey Bot Club 64:177–187

    Google Scholar 

  • Kuroda K, Kasuga J, Arakawa K, Fujikawa S (2003) Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation. Plant Physiol 131:736–744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lamport DT, Kieliszewski MJ, Showalter AM (2006) Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol 169:479–492

    CAS  PubMed  Google Scholar 

  • Langenfeld-Heyser R (1989) CO2 fixation in stem slices of Picea abies (L.) Karst: microautoradiographic studies. Trees 3:24–32

    Google Scholar 

  • Langheinrich U, Tischner R (1991) Vegetative storage proteins in poplar induction and characterization of a 32-and a 36-kilodalton polypeptide. Plant Physiol 97:1017–1025

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larcher W, Lütz C, Nagele M, Bodner M (1988) Photosynthetic functioning and ultrastructure of chloroplasts in stem tissues of Fagus sylvatica. J Plant Physiol 132:731–737

    CAS  Google Scholar 

  • Lens F, Jansen S, Robbrecht E, Smets E (2000) Wood anatomy of the Vanguerieae (Ixoroideae-Rubiaceae), with special emphasis on some geofrutices. IAWA J 21:443–455

    Google Scholar 

  • Loescher WH, McCamant T, Keller JD (1990) Carbohydrate reserves, translocation, and storage in woody plant roots. Hortscience 25:274–281

    CAS  Google Scholar 

  • Magel E, Jay-Allemand C, Ziegler H (1994) Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees 8:165–171

    Google Scholar 

  • Martín JA, Solla A, Esteban LG, de Palacios P, Gil L (2009) Bordered pit and ray morphology involvement in elm resistance to Ophiostoma novo-ulmi. Can J For Res 39:420–429

    Google Scholar 

  • Mauseth J, Plemons-Rodriguez B (1997) Presence of paratracheal water storage tissue does not alter vessel characters in cactus wood. Am J Bot 84:815

    CAS  PubMed  Google Scholar 

  • McCulloh KA, Johnson DM, Meinzer FC, Voelker SL, Lachenbruch B, Domec J-C (2012) Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. Plant Cell Environ 35:116–125

    PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    PubMed  Google Scholar 

  • McElrone AJ, Grant JA, Kluepfel DA (2010) The role of tyloses in crown hydraulic failure of mature walnut trees afflicted by apoplexy disorder. Tree Physiol 30:761–772

    PubMed  Google Scholar 

  • Millard P, Grelet G (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    CAS  PubMed  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, Jena

    Google Scholar 

  • Newell EA, Mulkey SS, Wright JS (2002) Seasonal patterns of carbohydrate storage in four tropical tree species. Oecologia 131:333–342

    Google Scholar 

  • Nicole M, Geiger J, Nandris D (1992) Defense of angiosperm roots against fungal invasion. In: Timell TE (ed) Defense mechanisms of woody plants against fungi. Springer, Berlin, pp 181–206

    Google Scholar 

  • Palacio S, Maestro M, Montserrat-Martí G (2007) Seasonal dynamics of non-structural carbohydrates in two species of Mediterranean sub-shrubs with different leaf phenology. Environ Exp Bot 59:34–42

    CAS  Google Scholar 

  • Palacio S, Hoch G, Sala A, Körner C, Millard P (2014) Does carbon storage limit tree growth? New Phytol 201:1096–1100

    CAS  PubMed  Google Scholar 

  • Panchen ZA, Primack RB, Nordt B, Ellwood ER, Stevens A-D, Renner SS et al (2014) Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytol 203(4):1208–1219

    CAS  PubMed  Google Scholar 

  • Pate JS, Froend RH, Bowen BJ, Hansen A, Kuo J (1990) Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean-type ecosystems of SW Australia. Ann Bot 65:585–601

    Google Scholar 

  • Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M (2002) Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89:147–162

    CAS  PubMed  Google Scholar 

  • Plavcová L, Hacke UG (2011) Heterogeneous distribution of pectin epitopes and calcium in different pit types of four angiosperm species. New Phytol 192:885–897

    PubMed  Google Scholar 

  • Pratt R, Jacobsen A, Ewers F, Davis S (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798

    CAS  PubMed  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D et al (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–567

    CAS  PubMed  Google Scholar 

  • Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P et al (2013) Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol 197:850–861

    CAS  PubMed  Google Scholar 

  • Rioux D, Nicole M, Simard M, Ouellette G (1998) Immunocytochemical evidence that secretion of pectin occurs during gel (gum) and tylosis formation in trees. Phytopathology 88:494–505

    CAS  PubMed  Google Scholar 

  • Ristic Z, Ashworth EN (1994) Response of xylem ray parenchyma cells of red osier dogwood (Cornus sericea L.) to freezing stress. Plant Physiol 104:737–746

    PubMed Central  PubMed  Google Scholar 

  • Ruelle J, Clair B, Beauchêne J, Prévost M-F, Fournier M et al (2006) Tension wood and opposite wood in 21 tropical rain forest species. 2. Comparison of some anatomical and ultrastructural criteria. IAWA J 27:341–376

    Google Scholar 

  • Sakai A, Larcher W et al (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, Berlin

    Google Scholar 

  • Sala A, Hoch G (2009) Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ 32:22–30

    PubMed  Google Scholar 

  • Sala A, Woodruff DR, Meinzer FC (2012a) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775

    CAS  PubMed  Google Scholar 

  • Sala A, Hopping K, McIntire EJ, Delzon S, Crone EE (2012b) Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. New Phytol 196:189–199

    CAS  PubMed  Google Scholar 

  • Salleo S, Lo Gullo M, De Paoli D, Zippo M (1996) Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytol 132:47–56

    Google Scholar 

  • Sauter JJ (1982) Efflux and reabsorption of sugars in the xylem I. Seasonal changes in sucrose efflux in Salix. Z Pflanzenphysiol 106:325–336

    CAS  Google Scholar 

  • Sauter JJ (1983) Efflux and reabsorption of sugars in the xylem II. Seasonal changes in sucrose uptake in Salix. Z Pflanzenphysiol 111:429–440

    CAS  Google Scholar 

  • Sauter JJ (1988) Seasonal changes in the efflux of sugars from parenchyma cells into the apoplast in poplar stems (Populus × canadensis “robusta”). Trees 2:242–249

    Google Scholar 

  • Sauter JJ, Kloth S (1986) Plasmodesmatal frequency and radial translocation rates in ray cells of poplar (Populus × canadensis Moench “robusta”). Planta 168:377–380

    Google Scholar 

  • Sauter JJ, van Cleve B (1991) Biochemical, immunochemical, and ultrastructural studies of protein storage in poplar (Populus × canadensis “robusta”) wood. Planta 183:92–100

    CAS  PubMed  Google Scholar 

  • Sauter JJ, van Cleve B (1994) Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 8:297–304

    Google Scholar 

  • Sauter JJ, Wellenkamp S (1998) Seasonal changes in content of starch, protein and sugars in the twig wood of Salix caprea L. Holzforschung 52:255–262

    CAS  Google Scholar 

  • Sauter JJ, Iten W, Zimmermann MH (1973) Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can J Bot 51:1–8

    CAS  Google Scholar 

  • Schill V, Hartung W, Orthen B, Weisenseel MH (1996) The xylem sap of maple (Acer platanoides) trees—sap obtained by a novel method shows changes with season and height. J Exp Bot 47:123–133

    CAS  Google Scholar 

  • Schoonmaker AL (2013) Resource allocation, water relations and crown architecture examined at the tree and stand-level in northern conifers. PhD thesis, University of Alberta, Edmonton

    Google Scholar 

  • Schrader S, Sauter JJ (2002) Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus × canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. J Plant Physiol 159:833–843

    CAS  Google Scholar 

  • Schwarze FW (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170

    Google Scholar 

  • Secchi F, Zwieniecki MA (2011) Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ 34:514–524

    CAS  PubMed  Google Scholar 

  • Secchi F, Gilbert ME, Zwieniecki MA (2011) Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and the biology of refilling. Plant Physiol 157:1419–1429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    CAS  PubMed  Google Scholar 

  • Sokolowska K, Zagórska-Marek B (2012) Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula × P. tremuloides (Salicaceae). Am J Bot 99:1745–1755

    PubMed  Google Scholar 

  • Sperry J (2013) Cutting-edge research or cutting-edge artefact? An overdue control experiment complicates the xylem refilling story. Plant Cell Environ 36:1916–1918

    PubMed  Google Scholar 

  • Spicer R (2005) Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier, San Diego, pp 457–475

    Google Scholar 

  • Spicer R, Holbrook NM (2005) Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia? Plant Cell Environ 28:192–201

    Google Scholar 

  • Spicer R, Holbrook NM (2007a) Effects of carbon dioxide and oxygen on sapwood respiration in five temperate tree species. J Exp Bot 58:1313–1320

    CAS  PubMed  Google Scholar 

  • Spicer R, Holbrook NM (2007b) Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? Plant Cell Environ 30:934–943

    Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–8

    PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor FH (1956) Variation in sugar content of maple sap. Univ Vermont State Agric College Bull 587:1–39

    Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability—a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Gullo MAL, Mosca R (1999) Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol 120:11–22

    PubMed Central  CAS  Google Scholar 

  • Van Bel AJ (1990) Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot 41:631–644

    Google Scholar 

  • Van Bel AJ, Van der Schoot C (1988) Primary function of the protective layer in contact cells. Buffer against oscillations in hydrostatic pressure in the vessels. IAWA Bull 9:285–288

    Google Scholar 

  • Verdaguer D, Ojeda F (2002) Root starch storage and allocation patterns in seeder and resprouter seedlings of two Cape Erica (Ericaceae) species. Am J Bot 89:1189–1196

    PubMed  Google Scholar 

  • Von Frey-Wyssling A, Aeberli H (1942) Der Anteil von Fasern, Gefäßen und Parenchym verschiedener Holzarten in Dreiecksdarstellung. Holz als Roh-und Werkstoff 5:265–268

    Google Scholar 

  • Wagenführ R (2007) Holzatlas. VEB Fachbuchverlag, Munich

    Google Scholar 

  • Wargo PM (1976) Variation of starch content among and within roots of red and white oak trees. For Sci 22:468–471

    Google Scholar 

  • Wheeler E, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the Inside Wood database. IAWA J 28:229

    Google Scholar 

  • Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013) Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant Cell Environ 36:1938–1949

    CAS  PubMed  Google Scholar 

  • White RG, Barton DA (2011) The cytoskeleton in plasmodesmata: a role in intercellular transport? J Exp Bot 62:5249–5266

    CAS  PubMed  Google Scholar 

  • Wiley E, Helliker B (2012) A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol 195:285–289

    CAS  PubMed  Google Scholar 

  • Wisniewski M, Davis G (1989) Evidence for the involvement of a specific cell wall layer in regulation of deep supercooling of xylem parenchyma. Plant Physiol 91:151–156

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wisniewski M, Davis G (1995) Immunogold localization of pectins and glycoproteins in tissues of peach with reference to deep supercooling. Trees 9:253–260

    Google Scholar 

  • Wisniewski M, Davis G, Schafter K (1991a) Mediation of deep supercooling of peach and dogwood by enzymatic modifications in cell-wall structure. Planta 184:254–260

    CAS  PubMed  Google Scholar 

  • Wisniewski M, Davis G, Arora R (1991b) Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach. Plant Physiol 96:1354–1359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Witt W, Buchholz A, Sauter JJ (1995) Binding of endoamylase to native starch grains from poplar wood. J Exp Bot 46:1761–1769

    CAS  Google Scholar 

  • Woodruff DR, Meinzer FC (2011) Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant Cell Environ 34:1920–1930

    CAS  PubMed  Google Scholar 

  • Würth MK, Pelaez-Riedl S, Wright SJ, Körner C (2005) Non-structural carbohydrate pools in a tropical forest. Oecologia 143:11–24

    PubMed  Google Scholar 

  • Yamada Y, Awano T, Fujita M, Takabe K (2011) Living wood fibers act as large-capacity “single-use” starch storage in black locust (Robinia pseudoacacia). Trees 25:607–616

    Google Scholar 

  • Yuanyuan M, Yali Z, Jiang L, Hongbo S (2009) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol 8:2004–2010

    Google Scholar 

  • Zavaliev R, Ueki S, Epel BL, Citovsky V (2011) Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117–130

    CAS  PubMed  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    CAS  PubMed  Google Scholar 

  • Zieminska K, Butler DW, Gleason SM, Wright IJ, Westoby M (2013) Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5:plt046

    PubMed Central  Google Scholar 

Download references

Acknowledgements

L.P. was supported by a postdoctoral fellowship from the Alexander von Humboldt Foundation and research funding from Ulm University and the Ulm University Society (Ulmer Universitätsgesellschaft). J.S. acknowledges the German Research Foundation (DFG) for financial support. We gratefully acknowledge the support and facilities provided by the Botanical Garden and the Electron Microcopy Unit of Ulm University. We thank Hugh Morris for fruitful discussion and useful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Plavcová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plavcová, L., Jansen, S. (2015). The Role of Xylem Parenchyma in the Storage and Utilization of Nonstructural Carbohydrates. In: Hacke, U. (eds) Functional and Ecological Xylem Anatomy. Springer, Cham. https://doi.org/10.1007/978-3-319-15783-2_8

Download citation

Publish with us

Policies and ethics