Skip to main content

Animal Models of Migraine

  • Chapter

Part of the book series: Headache ((HEAD))

Abstract

The headache research field is privileged to have in its preclinical laboratories well-established animal models that significantly facilitate and improve our understanding of headache mechanisms, in particular in terms of the molecular signalling and brain networks involved. A variety of pharmacological screening approaches for novel therapeutics and for the improvement of advanced pharmacological agents can be achieved in translational research utilising these models. The available migraine models have been developed based on our understanding of migraine from clinical, migraine patient-specific evidence. These clinical phenotypes have been successfully employed to model features of the disease physiology in animals and to provide reproducible meaningful physiological measures in the laboratory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Headache Classification Committee of the International Headache, S (2013) The international classification of headache disorders, 3rd edn (beta version). Cephalalgia 33:629–808

    Google Scholar 

  2. Blau JN (1986) Clinical characteristics of premonitory symptoms in migraine. In: Amery WK, Waquir A (eds) The prelude to the migraine attack. Balliere Tindall, London, pp 39–43

    Google Scholar 

  3. Coppola G, Di Lorenzo C, Schoenen J, Pierelli F (2013) Habituation and sensitization in primary headaches. J Headache Pain 14:65

    PubMed Central  PubMed  Google Scholar 

  4. Crawley J et al (2013) Protective effects of non-anticoagulant activated protein C variant (D36A/L38D/A39V) in a murine model of ischaemic stroke. J Thromb Haemost 11:64 (Wiley-Blackwell 111 River St, Hoboken 07030-5774, NJ USA, 2013)

    Google Scholar 

  5. Iversen HK, Olesen J, Tfelt-Hansen P (1989) Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38:17–24

    CAS  PubMed  Google Scholar 

  6. Afridi SK, Kaube H, Goadsby PJ (2004) Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 110:675–680

    CAS  PubMed  Google Scholar 

  7. Maniyar FH, Sprenger T, Schankin C, Goadsby PJ (2014) The origin of nausea in migraine-A PET study. J Headache Pain 15:84

    PubMed Central  PubMed  Google Scholar 

  8. Pietrobon D (2007) Familial hemiplegic migraine. Neurotherapeutics 4:274–284

    CAS  PubMed  Google Scholar 

  9. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    PubMed Central  PubMed  Google Scholar 

  10. N.C.R.R.G.W. Group (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Exp Physiol 95:842–844

    Google Scholar 

  11. Danos O, Davies K, Lehn P, Mulligan R (2010) The ARRIVE guidelines, a welcome improvement to standards for reporting animal research. J Gene Med 12:559–560

    PubMed  Google Scholar 

  12. Ray BS, Wolff HG (1940) Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg 41:813–856

    Google Scholar 

  13. Goadsby P, Charbit A, Andreou A, Akerman S, Holland P (2009) Neurobiology of migraine. Neuroscience 161:327–341

    CAS  PubMed  Google Scholar 

  14. Akerman S, Holland PR, Goadsby PJ (2011) Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 12:570–584

    CAS  PubMed  Google Scholar 

  15. May A et al (1998) Retinal plasma extravasation in animals but not in humans: implications for the pathophysiology of migraine. Brain 121(Pt 7):1231–1237

    PubMed  Google Scholar 

  16. Olesen J (1998) Regional cerebral blood flow and oxygen metabolism during migraine with and without aura. Cephalalgia 18:2–4

    CAS  PubMed  Google Scholar 

  17. Leão AA (1944) Spreading depression of activity in cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  18. Alstadhaug KB (2009) Migraine and the hypothalamus. Cephalalgia 29:809–817

    CAS  PubMed  Google Scholar 

  19. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47:1418–1426

    PubMed  Google Scholar 

  20. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137:232–241

    PubMed  Google Scholar 

  21. De Vries P, Villalon CM, Saxena PR (1999) Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur J Pharmacol 375:61–74

    PubMed  Google Scholar 

  22. Goadsby PJ, Edvinsson L, Ekman R (1990) Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 28:183–187

    CAS  PubMed  Google Scholar 

  23. Schoonman GG et al (2008) Migraine headache is not associated with cerebral or meningeal vasodilatation–a 3T magnetic resonance angiography study. Brain 131:2192–2200

    CAS  PubMed  Google Scholar 

  24. Rahmann A et al (2008) Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28:226–236

    CAS  PubMed  Google Scholar 

  25. Schytz HW et al (2009) PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132:16–25

    PubMed  Google Scholar 

  26. Bigal ME, Lipton RB (2006) The preventive treatment of migraine. Neurologist 12:204–213

    PubMed  Google Scholar 

  27. Nilsson T, Longmore J, Shaw D, Olesen IJ, Edvinsson L (1999) Contractile 5-HT1B receptors in human cerebral arteries: pharmacological characterization and localization with immunocytochemistry. Br J Pharmacol 128:1133–1140

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Sams A, Jansen-Olesen I (1998) Expression of calcitonin receptor-like receptor and receptor-activity-modifying proteins in human cranial arteries. Neurosci Lett 258:41–44

    CAS  PubMed  Google Scholar 

  29. Bigal ME et al (2013) Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: results of the phase 1 program. Cephalalgia 34:483–492

    PubMed  Google Scholar 

  30. Dodick DW et al (2014) Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol 13:1100–1107

    CAS  PubMed  Google Scholar 

  31. Reuter U (2014) Anti-CGRP antibodies: a new approach to migraine prevention. Lancet Neurol 13:857–859

    PubMed  Google Scholar 

  32. Heyck H (1969) Pathogenesis of migraine. Res Clin Stud Headache 2:1–28

    Google Scholar 

  33. Drummond PD, Lance JW (1984) Facial temperature in migraine, tension-vascular and tension headache. Cephalalgia 4:149–158

    CAS  PubMed  Google Scholar 

  34. Guo S et al (2014) Prevalence of right-to-left shunts on transcranial Doppler in chronic migraine and medication-overuse headache. Cephalalgia 34:37–41

    PubMed  Google Scholar 

  35. Den Boer MO et al (1993) On the preservation and regulation of vascular tone in arteriovenous anastomoses during anesthesia. J Appl Physiol 75:782–789

    Google Scholar 

  36. Villalon CM et al (1999) Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and alpha2-adrenoceptors. Br J Pharmacol 126:585–594

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Kapoor K et al (2004) Assessment of anti-migraine potential of a novel alpha-adrenoceptor agonist S19014: effects on porcine carotid and regional haemodynamics and human coronary artery. Cephalalgia 24:425–438

    CAS  PubMed  Google Scholar 

  38. Verheggen R, Hundeshagen AG, Brown AM, Schindler M, Kaumann AJ (1998) 5-HT1B receptor-mediated contractions in human temporal artery: evidence from selective antagonists and 5-HT receptor mRNA expression. Br J Pharmacol 124:1345–1354

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Muller-Schweinitzer E, Weidmann H (1977) Regional differences in the responsiveness of isolated arteries from cattle, dog and man. Agents Actions 7:383–389

    CAS  PubMed  Google Scholar 

  40. Franco-Cereceda A, Rudehill A, Lundberg JM (1987) Calcitonin gene-related peptide but not substance P mimics capsaicin-induced coronary vasodilation in the pig. Eur J Pharmacol 142:235–243

    CAS  PubMed  Google Scholar 

  41. Petersen KA, Nilsson E, Olesen J, Edvinsson L (2005) Presence and function of the calcitonin gene-related peptide receptor on rat pial arteries investigated in vitro and in vivo. Cephalalgia 25:424–432

    CAS  PubMed  Google Scholar 

  42. Faraci FM, Breese KR (1994) Dilatation of cerebral arterioles in response to N-methyl-D-aspartate: role of CGRP and acetylcholine. Brain Res 640:93–97

    CAS  PubMed  Google Scholar 

  43. Busija DW, Chen J (1992) Effects of trigeminal neurotransmitters on piglet pial arterioles. J Dev Physiol 18:67–72

    CAS  PubMed  Google Scholar 

  44. Gupta S et al (2006) Intravital microscopy on a closed cranial window in mice: a model to study trigeminovascular mechanisms involved in migraine. Cephalalgia 26:1294–1303

    CAS  PubMed  Google Scholar 

  45. Akerman S, Williamson DJ, Kaube H, Goadsby PJ (2002) The effect of anti-migraine compounds on nitric oxide-induced dilation of dural meningeal vessels. Eur J Pharmacol 452:223–228

    CAS  PubMed  Google Scholar 

  46. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Intravital microscope studies on the effects of neurokinin agonists and calcitonin gene-related peptide on dural vessel diameter in the anaesthetized rat. Cephalalgia 17:518–524

    CAS  PubMed  Google Scholar 

  47. Petersen KA, Birk S, Doods H, Edvinsson L, Olesen J (2004) Inhibitory effect of BIBN4096BS on cephalic vasodilatation induced by CGRP or transcranial electrical stimulation in the rat. Br J Pharmacol 143:697–704

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Gupta S, Villalon CM (2010) The relevance of preclinical research models for the development of antimigraine drugs: focus on 5-HT(1B/1D) and CGRP receptors. Pharmacol Ther 128:170–190

    CAS  PubMed  Google Scholar 

  49. Gupta S, Bhatt DK, Boni LJ, Olesen J (2010) Improvement of the closed cranial window model in rats by intracarotid infusion of signalling molecules implicated in migraine. Cephalalgia 30:27–36

    CAS  PubMed  Google Scholar 

  50. Tvedskov JF et al (2005) No increase of calcitonin gene-related peptide in jugular blood during migraine. Ann Neurol 58:561–568

    CAS  PubMed  Google Scholar 

  51. Edvinsson L, Goadsby PJ (1994) Neuropeptides in migraine and cluster headache. Cephalalgia 14:320–327

    CAS  PubMed  Google Scholar 

  52. Messlinger K, Hotta H, Pawlak M, Schmidt RF (1997) Effects of the 5-HT1 receptor agonists, sumatriptan and CP 93,129, on dural arterial flow in the rat. Eur J Pharmacol 332:173–181

    CAS  PubMed  Google Scholar 

  53. Kurosawa M, Messlinger K, Pawlak M, Schmidt RF (1995) Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol 114:1397–1402

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Geppetti P, Rossi E, Chiarugi A, Benemei S (2012) Antidromic vasodilatation and the migraine mechanism. J Headache Pain 13:103–111

    PubMed Central  PubMed  Google Scholar 

  55. Levy D, Burstein R, Strassman AM (2005) Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol 58:698–705

    CAS  PubMed  Google Scholar 

  56. Akerman S, Williamson DJ, Hill RG, Goadsby PJ (2001) The effect of adrenergic compounds on neurogenic dural vasodilatation. Eur J Pharmacol 424:53–58

    CAS  PubMed  Google Scholar 

  57. Escott KJ, Connor HE, Brain SD, Beattie DT (1995) The involvement of calcitonin gene-related peptide (CGRP) and substance P in feline pial artery diameter responses evoked by capsaicin. Neuropeptides 29:129–135

    CAS  PubMed  Google Scholar 

  58. Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP (2014) Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. Prog Drug Res Fortschritte der Arzneimittelforschung Progres des recherches pharmaceutiques 68:39–76

    Google Scholar 

  59. Summ O, Akerman S, Holland PR, Goadsby PJ (2009) The TRPV1 receptor antagonist, A-993610, shows no effect on neurogenic dural dilation but is able to block capsaicin induced dilation. Cephalalgia 29:136

    Google Scholar 

  60. Neeb L, Reuter U (2007) Nitric oxide in migraine. CNS Neurol Disord Drug Targets 6:258–264

    CAS  PubMed  Google Scholar 

  61. Bellamy J, Bowen EJ, Russo AF, Durham PL (2006) Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci 23:2057–2066

    PubMed Central  PubMed  Google Scholar 

  62. Li J, Vause CV, Durham PL (2008) Calcitonin gene-related peptide stimulation of nitric oxide synthesis and release from trigeminal ganglion glial cells. Brain Res 1196:22–32

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Messlinger K, Suzuki A, Pawlak M, Zehnter A, Schmidt RF (2000) Involvement of nitric oxide in the modulation of dural arterial blood flow in the rat. Br J Pharmacol 129:1397–1404

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Olesen J et al (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    CAS  PubMed  Google Scholar 

  65. Ho TW et al (2009) Efficacy and tolerability of MK-0974 (telcagepant), a new oral antagonist of calcitonin gene-related peptide receptor, compared with zolmitriptan for acute migraine: a randomised, placebo-controlled, parallel-treatment trial. Lancet 372:2115–2123

    Google Scholar 

  66. Williamson DJ, Hargreaves RJ, Hill RG, Shepheard SL (1997) Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat–intravital microscope studies. Cephalalgia 17:525–531

    CAS  PubMed  Google Scholar 

  67. Akerman S, Goadsby PJ (2005) Topiramate inhibits trigeminovascular activation: an intravital microscopy study. Br J Pharmacol 146:7–14

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Williamson DJ, Hargreaves RJ (2001) Neurogenic inflammation in the context of migraine. Microsc Res Tech 53:167–178

    CAS  PubMed  Google Scholar 

  69. Carmody J, Pawlak M, Messlinger K (1996) Lack of a role for substance P in the control of dural arterial flow. Exp Brain Res 111:424–428

    CAS  PubMed  Google Scholar 

  70. Goldstein DJ et al (2001) Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia 21:102–106

    CAS  PubMed  Google Scholar 

  71. Goldstein DJ et al (1997) Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia 17:785–790

    CAS  PubMed  Google Scholar 

  72. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ (2010) Inhibition of trigeminovascular dural nociceptive afferents by Ca(2+)-activated K(+) (MaxiK/BK(Ca)) channel opening. Pain 151:128–136

    CAS  PubMed  Google Scholar 

  73. Akerman S, Holland PR, Goadsby PJ (2007) Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther 320:64–71

    CAS  PubMed  Google Scholar 

  74. Holland PR, Akerman S, Goadsby PJ (2005) Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther 315:1380–1385

    CAS  PubMed  Google Scholar 

  75. Shepheard S et al (1999) Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370. Cephalalgia 19:851–858

    CAS  PubMed  Google Scholar 

  76. Summ O, Andreou AP, Akerman S, Goadsby PJ (2010) A potential nitrergic mechanism of action for indomethacin, but not of other COX inhibitors: relevance to indomethacin-sensitive headaches. J Headache Pain 11:477–483

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Akerman S, Williamson DJ, Goadsby PJ (2003) Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism. Br J Pharmacol 140:558–566

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Gupta S et al (2007) Female sex hormones and rat dural vasodilatation to CGRP, periarterial electrical stimulation and capsaicin. Headache 47:225–235

    PubMed  Google Scholar 

  79. Akerman S, Goadsby PJ (2005) The role of dopamine in a model of trigeminovascular nociception. J Pharmacol Exp Ther 314:162–169

    CAS  PubMed  Google Scholar 

  80. Andreou AP, Holland PR, Goadsby PJ (2009) Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Br J Pharmacol 157:464–473

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Markowitz S, Saito K, Moskowitz MA (1988) Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache. Cephalalgia 8:83–91

    CAS  PubMed  Google Scholar 

  82. Moskowitz MA (1993) Neurogenic inflammation in the pathophysiology and treatment of migraine. Neurology 43:S16–S20

    CAS  PubMed  Google Scholar 

  83. Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ (2010) Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother 10:389–411

    PubMed  Google Scholar 

  84. Dimitriadou V, Buzzi MG, Theoharides TC, Moskowitz MA (1992) Ultrastructural evidence for neurogenically mediated changes in blood vessels of the rat dura mater and tongue following antidromic trigeminal stimulation. Neuroscience 48:187–203

    CAS  PubMed  Google Scholar 

  85. Pietrobon D, Moskowitz MA (2013) Pathophysiology of migraine. Annu Rev Physiol 75:365–391

    CAS  PubMed  Google Scholar 

  86. Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136

    CAS  PubMed  Google Scholar 

  87. Strassman AM, Raymond SA, Burstein R (1996) Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384:560–564

    CAS  PubMed  Google Scholar 

  88. Kandere-Grzybowska K et al (2003) Stress-induced dura vascular permeability does not develop in mast cell-deficient and neurokinin-1 receptor knockout mice. Brain Res 980:213–220

    CAS  PubMed  Google Scholar 

  89. Goadsby PJ, Edvinsson L (1998) Neuropeptides in headache. Eur J Neurol 5:329–341

    Google Scholar 

  90. Delepine L, Aubineau P (1997) Plasma protein extravasation induced in the rat dura mater by stimulation of the parasympathetic sphenopalatine ganglion. Exp Neurol 147:389–400

    CAS  PubMed  Google Scholar 

  91. Buzzi MG, Sakas DE, Moskowitz MA (1989) Indomethacin and acetylsalicylic acid block neurogenic plasma protein extravasation in rat dura mater. Eur J Pharmacol 165:251–258

    CAS  PubMed  Google Scholar 

  92. Schuh-Hofer S, Tayefeh M, Reuter U, Dirnagl U, Arnold G (2006) Effects of parecoxib on plasma protein extravasation and c-fos expression in the rat. Headache 46:276–285

    PubMed  Google Scholar 

  93. Phebus LA et al (1997) Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci 61:2117–2126

    CAS  PubMed  Google Scholar 

  94. Yu XJ, Cutrer FM, Moskowitz MA, Waeber C (1997) The 5-HT1D receptor antagonist GR-127,935 prevents inhibitory effects of sumatriptan but not CP-122,288 and 5-CT on neurogenic plasma extravasation within guinea pig dura mater. Neuropharmacology 36:83–91

    CAS  PubMed  Google Scholar 

  95. Cutrer FM, Yu XJ, Ayata G, Moskowitz MA, Waeber C (1999) Effects of PNU-109,291, a selective 5-HT1D receptor agonist, on electrically induced dural plasma extravasation and capsaicin-evoked c-fos immunoreactivity within trigeminal nucleus caudalis. Neuropharmacology 38:1043–1053

    CAS  PubMed  Google Scholar 

  96. Buzzi MG, Moskowitz MA (1990) The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol 99:202–206

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Polley JS et al (1997) The activity of GR205171, a potent non-peptide tachykinin NK1 receptor antagonist, in the trigeminovascular system. Regul Pept 68:23–29

    CAS  PubMed  Google Scholar 

  98. Phebus LA et al (1997) The non-peptide NK-1 receptor antagonist LY303870 inhibits neurogenic dural inflammation in guinea pigs. Life Sci 60:1553–1561

    CAS  PubMed  Google Scholar 

  99. Goldstein DJ, Offen WW, Klein EG, Phebus LA (1999) Lanepitant an NK-1 antagonist in migraine prophylaxis. Cephalalgia 19:377

    Google Scholar 

  100. Peroutka SJ (2005) Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv 5:304–311

    CAS  PubMed  Google Scholar 

  101. Kruuse C, Thomsen LL, Birk S, Olesen J (2003) Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 126:241–247

    PubMed  Google Scholar 

  102. Goadsby PJ (2007) Recent advances in understanding migraine mechanisms, molecules and therapeutics. Trends Mol Med 13:39–44

    CAS  PubMed  Google Scholar 

  103. Afridi SK, Goadsby PJ (2006) Neuroimaging of migraine. Curr Pain Headache Rep 10:221–224

    PubMed  Google Scholar 

  104. Wolff HG (1948) Headache and other head pain. Oxford University Press, New York

    Google Scholar 

  105. Penfield W (1934) A contribution to the mechanism of intracranial pain. In: Proceedings of the association for research in nervous and mental disease, pp 399–415

    Google Scholar 

  106. Penfield W, McNaughton F (1940) Dural headache and innervation of the dura matter. Arch Neurol Psychiatry 44:43–75

    Google Scholar 

  107. White JP, Cibelli M, Fidalgo AR, Nagy I (2011) Extracellular signal-regulated kinases in pain of peripheral origin. Eur J Pharmacol 650:8–17

    CAS  PubMed  Google Scholar 

  108. Kaube H, Keay KA, Hoskin KL, Bandler R, Goadsby PJ (1993) Expression of c-Fos-like immunoreactivity in the caudal medulla and upper cervical spinal cord following stimulation of the superior sagittal sinus in the cat. Brain Res 629:95–102

    CAS  PubMed  Google Scholar 

  109. Burstein R, Yamamura H, Malick A, Strassman AM (1998) Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J Neurophysiol 79:964–982

    CAS  PubMed  Google Scholar 

  110. Hoskin KL, Bulmer DC, Goadsby PJ (1999) Fos expression in the trigeminocervical complex of the cat after stimulation of the superior sagittal sinus is reduced by L-NAME. Neurosci Lett 266:173–176

    CAS  PubMed  Google Scholar 

  111. Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    CAS  PubMed  Google Scholar 

  112. Keay KA, Bandler R (1998) Vascular head pain selectively activates ventrolateral periaqueductal gray in the cat. Neurosci Lett 245:58–60

    CAS  PubMed  Google Scholar 

  113. Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R (2001) A neurohistochemical blueprint for pain-induced loss of appetite. Proc Natl Acad Sci U S A 98:9930–9935

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Pearse DD, Bushell G, Leah JD (2001) Jun, Fos and Krox in the thalamus after C-fiber stimulation: coincident-input-dependent expression, expression across somatotopic boundaries, and nucleolar translocation. Neuroscience 107:143–159

    CAS  PubMed  Google Scholar 

  115. Knyihar-Csillik E et al (2007) Prevention of electrical stimulation-induced increase of c-fos immunoreaction in the caudal trigeminal nucleus by kynurenine combined with probenecid. Neurosci Lett 418:122–126

    CAS  PubMed  Google Scholar 

  116. Hoskin KL, Goadsby PJ (1998) Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp Neurol 150:45–51

    CAS  PubMed  Google Scholar 

  117. Maneepak M, le Grand S, Srikiatkhachorn A (2009) Serotonin depletion increases nociception-evoked trigeminal NMDA receptor phosphorylation. Headache 49:375–382

    PubMed  Google Scholar 

  118. Tanuri FC et al (2009) Melatonin treatment decreases c-fos expression in a headache model induced by capsaicin. J Headache Pain 10:105–110

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Cutrer FM, Limmroth V, Ayata G, Moskowitz MA (1995) Attenuation by valproate of c-fos immunoreactivity in trigeminal nucleus caudalis induced by intracisternal capsaicin. Br J Pharmacol 116:3199–3204

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Sixt ML, Messlinger K, Fischer MJ (2009) Calcitonin gene-related peptide receptor antagonist olcegepant acts in the spinal trigeminal nucleus. Brain 132:3134–3141

    PubMed  Google Scholar 

  121. Goadsby PJ, Hoskin KL (1999) Differential effects of low dose CP122,288 and eletriptan on fos expression due to stimulation of the superior sagittal sinus in cat. Pain 82:15–22

    CAS  PubMed  Google Scholar 

  122. Goadsby PJ, Hoskin KL, Knight YE (1998) Substance P blockade with the potent and centrally acting antagonist GR205171 does not effect central trigeminal activity with superior sagittal sinus stimulation. Neuroscience 86:337–343

    CAS  PubMed  Google Scholar 

  123. Edling Y, Ingelman-Sundberg M, Simi A (2007) Glutamate activates c-fos in glial cells via a novel mechanism involving the glutamate receptor subtype mGlu5 and the transcriptional repressor DREAM. Glia 55:328–340

    PubMed  Google Scholar 

  124. Dragunow M, Faull RL (1990) MK801 induces c-fos protein in thalamic and neocortical neurons of rat brain. Neurosci Lett 113:144–150

    CAS  PubMed  Google Scholar 

  125. Flores C, Arvanitogiannis A, Shizgal P (1997) Fos-like immunoreactivity in forebrain regions following self-stimulation of the lateral hypothalamus and the ventral tegmental area. Behav Brain Res 87:239–251

    CAS  PubMed  Google Scholar 

  126. Lima D, Avelino A (1994) Spinal c-fos expression is differentially induced by brief or persistent noxious stimulation. Neuroreport 5:1853–1856

    CAS  PubMed  Google Scholar 

  127. Goadsby PJ, Zagami AS (1991) Stimulation of the superior sagittal sinus increases metabolic activity and blood flow in certain regions of the brainstem and upper cervical spinal cord of the cat. Brain 114(Pt 2):1001–1011

    PubMed  Google Scholar 

  128. Lambert GA, Goadsby PJ, Zagami AS, Duckworth JW (1988) Comparative effects of stimulation of the trigeminal ganglion and the superior sagittal sinus on cerebral blood flow and evoked potentials in the cat. Brain Res 453:143–149

    CAS  PubMed  Google Scholar 

  129. Olesen J et al (1990) Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol 28:791–798

    CAS  PubMed  Google Scholar 

  130. Escott KJ, Beattie DT, Connor HE, Brain SD (1995) Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res 669:93–99

    CAS  PubMed  Google Scholar 

  131. Oshinsky ML, Luo J (2006) Neurochemistry of trigeminal activation in an animal model of migraine. Headache 46(Suppl 1):S39–S44

    PubMed  Google Scholar 

  132. Goadsby PJ, Edvinsson L (1993) The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 33:48–56

    CAS  PubMed  Google Scholar 

  133. Diener HC et al (1991) Ergotamine, flunarizine and sumatriptan do not change cerebral blood flow velocity in normal subjects and migraneurs. J Neurol 238:245–250

    CAS  PubMed  Google Scholar 

  134. Hoskin KL, Kaube H, Goadsby PJ (1996) Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study. Brain 119(Pt 1):249–256

    PubMed  Google Scholar 

  135. Davis KD, Dostrovsky JO (1986) Activation of trigeminal brain-stem nociceptive neurons by dural artery stimulation. Pain 25:395–401

    CAS  PubMed  Google Scholar 

  136. Strassman A, Mason P, Moskowitz M, Maciewicz R (1986) Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res 379:242–250

    CAS  PubMed  Google Scholar 

  137. Bolton S, O’Shaughnessy CT, Goadsby PJ (2005) Properties of neurons in the trigeminal nucleus caudalis responding to noxious dural and facial stimulation. Brain Res 1046:122–129

    CAS  PubMed  Google Scholar 

  138. Bartsch T, Goadsby PJ (2003) Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain 126:1801–1813

    CAS  PubMed  Google Scholar 

  139. Xiao Y, Richter JA, Hurley JH (2008) Release of glutamate and CGRP from trigeminal ganglion neurons: role of calcium channels and 5-HT1 receptor signaling. Mol Pain 4:12

    PubMed Central  PubMed  Google Scholar 

  140. Shields KG, Goadsby PJ (2005) Propranolol modulates trigeminovascular responses in thalamic ventroposteromedial nucleus: a role in migraine? Brain 128:86–97

    PubMed  Google Scholar 

  141. Shields KG, Goadsby PJ (2006) Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis 23:491–501

    CAS  PubMed  Google Scholar 

  142. Lambert GA et al (2014) Stimulation of dural vessels excites the SI somatosensory cortex of the cat via a relay in the thalamus. Cephalalgia 34:243–257

    PubMed  Google Scholar 

  143. Cumberbatch MJ, Hill RG, Hargreaves RJ (1998) Differential effects of the 5HT1B/1D receptor agonist naratriptan on trigeminal versus spinal nociceptive responses. Cephalalgia 18:659–663

    CAS  PubMed  Google Scholar 

  144. Cumberbatch MJ, Williamson DJ, Mason GS, Hill RG, Hargreaves RJ (1999) Dural vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br J Pharmacol 126:1478–1486

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Fischer MJ, Koulchitsky S, Messlinger K (2005) The nonpeptide calcitonin gene-related peptide receptor antagonist BIBN4096BS lowers the activity of neurons with meningeal input in the rat spinal trigeminal nucleus. J Neurosci 25:5877–5883

    CAS  PubMed  Google Scholar 

  146. Andreou A, Goadsby P (2010) Topiramate acts on kainate receptors within the trigeminothalamic pathway. Headache 50:S5 (Wiley-Blackwell Publishing, Inc Commerce Place, 350 Main St, Malden 02148, MA USA, 2010)

    Google Scholar 

  147. Andreou AP, Goadsby PJ (2009) Therapeutic potential of novel glutamate receptor antagonists in migraine. Expert Opin Investig Drugs 18:789–803

    CAS  PubMed  Google Scholar 

  148. Storer RJ, Goadsby PJ (2009) N-Methyl-d-Aspartate receptor channel complex blockers including memantine and magnesium inhibit nociceptive traffic in the trigeminocervical complex of the rat. Cephalalgia 29:135

    Google Scholar 

  149. Andreou A, Goadsby P (2009) LY466195, a clinically active compound in the acute treatment of migraine, inhibits activation in the trigeminocervical complex and the ventroposteromedial thalamus after nociceptive trigeminovascular activation. Cephalalgia 29:132 (Wiley-Blackwell Publishing, Inc Commerce Place, 350 Main St, Malden 02148, MA USA, 2009)

    Google Scholar 

  150. Andreou A, Goadsby P, Holland P (2007) Pre- and post-synaptic involvement of GluR5 kainate receptors in trigeminovascular nociceptive processing. Cephalalgia 27:605

    Google Scholar 

  151. Andreou A, Holland P, Goadsby P (2008) iGluR5 kainate receptors modulate trigeminovascular nociceptive transmission in thalamic ventroposteromedial nucleus. Headache 48:S5–S6 (Blackwell Publishing 9600 GARSINGTON RD, Oxford OX4 2DQ, Oxon, England, 2008)

    Google Scholar 

  152. Andreou A, Storer R, Holland P, Goadsby P (2006) CNQX inhibits trigeminovascular neurons in the rat: a microiontophoresis study. Cephalalgia 26:1383 (Blackwell Publishing 9600 GARSINGTON RD, Oxford OX4 2DQ, Oxon, England, 2006)

    Google Scholar 

  153. Andreou AP, Goadsby PJ (2011) Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 31:1343–1358

    PubMed  Google Scholar 

  154. Hoffmann J et al (2014) Evidence for orexinergic mechanisms in migraine. Neurobiol Dis 74C:137–143

    Google Scholar 

  155. Charbit A, Akerman S, Goadsby P (2009) Comparison of the effects of central and peripheral dopamine receptor activation on evoked firing in the trigeminocervical complex. J Pharmacol Exp Ther 331(2):752–763

    CAS  PubMed  Google Scholar 

  156. Lambert GA et al (2009) The effects of the TRPV1 receptor antagonist SB-705498 on trigeminovascular sensitisation and neurotransmission. Naunyn Schmiedebergs Arch Pharmacol 380:311–325

    CAS  PubMed  Google Scholar 

  157. Lambert GA, Lowy AJ, Boers PM, Angus-Leppan H, Zagami AS (1992) The spinal cord processing of input from the superior sagittal sinus: pathway and modulation by ergot alkaloids. Brain Res 597:321–330

    CAS  PubMed  Google Scholar 

  158. Storer RJ, Goadsby PJ (1997) Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat. Brain 120(Pt 12):2171–2177

    PubMed  Google Scholar 

  159. Goadsby PJ, Lipton RB, Ferrari MD (2002) Migraine–current understanding and treatment. N Engl J Med 346:257–270

    CAS  PubMed  Google Scholar 

  160. Storer RJ, Akerman S, Goadsby PJ (2004) Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol 142:1171–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Summ O, Charbit AR, Andreou AP, Goadsby PJ (2010) Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain 133:2540–2548

    PubMed  Google Scholar 

  162. Andreou AP, Shields KG, Goadsby PJ (2010) GABA and valproate modulate trigeminovascular nociceptive transmission in the thalamus. Neurobiol Dis 37:314–323

    CAS  PubMed  Google Scholar 

  163. Bartsch T, Goadsby PJ (2002) Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 125:1496–1509

    PubMed  Google Scholar 

  164. Bartsch T, Paemeleire K, Goadsby PJ (2009) Neurostimulation approaches to primary headache disorders. Curr Opin Neurol 22:262–268

    PubMed  Google Scholar 

  165. Weiller C et al (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1:658–660

    CAS  PubMed  Google Scholar 

  166. Knight YE, Bartsch T, Kaube H, Goadsby PJ (2002) P/Q-type calcium-channel blockade in the periaqueductal gray facilitates trigeminal nociception: a functional genetic link for migraine? J Neurosci 22:RC213

    PubMed  Google Scholar 

  167. Goadsby PJ, Lambert GA, Lance JW (1982) Differential effects on the internal and external carotid circulation of the monkey evoked by locus coeruleus stimulation. Brain Res 249:247–254

    CAS  PubMed  Google Scholar 

  168. Supronsinchai W et al (2013) GABAA receptors in the nucleus raphe magnus modulate firing of neurons in the trigeminocervical complex. J Headache Pain 14:P67

    PubMed Central  Google Scholar 

  169. Charbit AR, Akerman S, Holland PR, Goadsby PJ (2009) Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci 29:12532–12541

    CAS  PubMed  Google Scholar 

  170. Robert C et al (2013) Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci 33:8827–8840

    CAS  PubMed  Google Scholar 

  171. Noseda R, Kainz V, Borsook D, Burstein R (2014) Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS One 9:e103929

    PubMed Central  PubMed  Google Scholar 

  172. Noseda R et al (2010) A neural mechanism for exacerbation of headache by light. Nat Neurosci 13:239–245

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Burstein R, Cutrer MF, Yarnitsky D (2000) The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123(Pt 8):1703–1709

    PubMed  Google Scholar 

  174. Burstein R, Jakubowski M (2004) Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization. Ann Neurol 55:27–36

    CAS  PubMed  Google Scholar 

  175. Pozo-Rosich P, Oshinsky M (2005) Dihydroergotamine (DHE) reverses central sensitization in the trigeminal nucleus caudalis. Headache 45:767

    Google Scholar 

  176. Jakubowski M et al (2005) Terminating migraine with allodynia and ongoing central sensitization using parenteral administration of COX1/COX2 inhibitors. Headache 45:850–861

    PubMed  Google Scholar 

  177. Levy D, Zhang XC, Jakubowski M, Burstein R (2008) Sensitization of meningeal nociceptors: inhibition by naproxen. Eur J Neurosci 27:917–922

    PubMed Central  PubMed  Google Scholar 

  178. Burstein R et al (2010) Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol 68:81–91

    PubMed Central  PubMed  Google Scholar 

  179. Thomsen LL, Kruuse C, Iversen HK, Olesen J (1994) A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur J Neurol 1:73–80

    CAS  PubMed  Google Scholar 

  180. Tvedskov JF, Iversen HK, Olesen J, Tfelt-Hansen P (2010) Nitroglycerin provocation in normal subjects is not a useful human migraine model? Cephalalgia 30:928–932

    CAS  PubMed  Google Scholar 

  181. Thomsen LL, Brennum J, Iversen HK, Olesen J (1996) Effect of a nitric oxide donor (glyceryl trinitrate) on nociceptive thresholds in man. Cephalalgia 16:169–174

    CAS  PubMed  Google Scholar 

  182. Culotta E, Koshland DE (1992) No news is good-news. Science 258:1862–1865

    CAS  PubMed  Google Scholar 

  183. Tassorelli C, Greco R, Cappelletti D, Sandrini G, Nappi G (2005) Comparative analysis of the neuronal activation and cardiovascular effects of nitroglycerin, sodium nitroprusside and L-arginine. Brain Res 1051:17–24

    CAS  PubMed  Google Scholar 

  184. Olesen J, Jansen-Olesen I (2012) Towards a reliable animal model of migraine. Cephalalgia 32:578–580

    PubMed  Google Scholar 

  185. Ramachandran R et al (2012) A naturalistic glyceryl trinitrate infusion migraine model in the rat. Cephalalgia 32:73–84

    PubMed  Google Scholar 

  186. Tassorelli C, Joseph SA (1996) Systemic nitroglycerin activates peptidergic and catecholaminergic pathways in rat brain. Peptides 17:443–449

    CAS  PubMed  Google Scholar 

  187. Greco R et al (2013) Effect of sex and estrogens on neuronal activation in an animal model of migraine. Headache 53:288–296

    PubMed  Google Scholar 

  188. Dieterle A, Fischer MJ, Link AS, Neuhuber WL, Messlinger K (2011) Increase in CGRP- and nNOS-immunoreactive neurons in the rat trigeminal ganglion after infusion of an NO donor. Cephalalgia 31:31–42

    PubMed  Google Scholar 

  189. Ramachandran R et al (2014) Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia 34:136–147

    PubMed  Google Scholar 

  190. Kruuse C, Iversen HK, Jansen-Olesen I, Edvinsson L, Olesen J (2010) Calcitonin gene-related peptide (CGRP) levels during glyceryl trinitrate (GTN)-induced headache in healthy volunteers. Cephalalgia 30:467–474

    CAS  PubMed  Google Scholar 

  191. Offenhauser N et al (2005) CGRP release and c-fos expression within trigeminal nucleus caudalis of the rat following glyceryltrinitrate infusion. Cephalalgia 25:225–236

    CAS  PubMed  Google Scholar 

  192. Bates E et al (2009) Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia 30(2):170–178

    Google Scholar 

  193. Greco R et al (2013) Effects of CGRP receptor antagonism in nitroglycerin-induced hyperalgesia. Cephalalgia 34:594–604

    CAS  PubMed  Google Scholar 

  194. Akerman S, Goadsby PJ (2014) Acute anti-migraine treatments abort established central sensitization of trigeminovascular neurons: validation of a novel translational approach. Headache 54:2–3

    Google Scholar 

  195. Andreou AP, Chamberlain J (2014) Nitric oxide alters the neuronal firing of the dopaminergic hypothalamic nucleus A11. Headache 54:6–7

    Google Scholar 

  196. Greco R et al (2008) Role of central dopaminergic circuitry in pain processing and nitroglycerin-induced hyperalgesia. Brain Res 1238:215–223

    CAS  PubMed  Google Scholar 

  197. Rasmussen BK, Olesen J (1992) Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia 12:221–228

    CAS  PubMed  Google Scholar 

  198. Leao AAP (1944) Spreading depression of activity in cerebral cortex. J Neurophysiol 7:359–390

    Google Scholar 

  199. Olesen J (1991) Cerebral and extracranial circulatory disturbances in migraine: pathophysiological implications. Cerebrovasc Brain Metab Rev 3:1–28

    CAS  PubMed  Google Scholar 

  200. Brennan KC et al (2007) Distinct vascular conduction with cortical spreading depression. J Neurophysiol 97:4143–4151

    PubMed  Google Scholar 

  201. Haghir H, Kovac S, Speckmann EJ, Zilles K, Gorji A (2009) Patterns of neurotransmitter receptor distributions following cortical spreading depression. Neuroscience 163(4):1340–1352

    CAS  PubMed  Google Scholar 

  202. Gorji A et al (2001) Spreading depression in human neocortical slices. Brain Res 906:74–83

    CAS  PubMed  Google Scholar 

  203. Kaube H, Herzog J, Kaufer T, Dichgans M, Diener HC (2000) Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology 55:139–141

    CAS  PubMed  Google Scholar 

  204. Vinogradova LV, Kuznetsova GD, Coenen AM (2009) Unilateral cortical spreading depression induced by sound in rats. Brain Res 1286:201–207

    CAS  PubMed  Google Scholar 

  205. Bolay H, Akcali D, Yalcinkaya D, Sara Y (2009) Behavioral changes associated with cortical spreading depression in awake rats. Cephalalgia 29:142

    Google Scholar 

  206. Akcali D, Sayin A, Sara Y, Bolay H (2010) Does single cortical spreading depression elicit pain behaviour in freely moving rats? Cephalalgia 30:1195–1206

    PubMed  Google Scholar 

  207. Fioravanti B et al (2011) Evaluation of cutaneous allodynia following induction of cortical spreading depression in freely moving rats. Cephalalgia 31:1090–1100

    PubMed Central  PubMed  Google Scholar 

  208. Ayata C (2009) Spreading depression: from serendipity to targeted therapy in migraine prophylaxis. Cephalalgia 29:1095–1114

    CAS  PubMed  Google Scholar 

  209. Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA (2006) Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol 59:652–661

    CAS  PubMed  Google Scholar 

  210. Bogdanov VB et al (2011) Migraine preventive drugs differentially affect cortical spreading depression in rat. Neurobiol Dis 41:430–435

    CAS  PubMed  Google Scholar 

  211. Andreou A et al (2010) Acid-sensing ion channel 1-A potential site of action of amiloride in migraine with aura. J Headache Pain 11:S125 (Springer-Verlag ITALIA SRL VIA DECEMBRIO, 28, Milan, 20137, Italy, 2010)

    Google Scholar 

  212. Holland PR et al (2012) Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol 72:559–563

    CAS  PubMed  Google Scholar 

  213. Holland PR, Schembri C, Fredrick J, Goadsby PJ (2009) Transcranial magnetic stimulation for the treatment of migraine aura? Cephalalgia 29:22

    PubMed  Google Scholar 

  214. Andreou AP, Summ O, Schembri CT, Fredrick JP, Goadsby PJ (2010) Transcranial magnetic stimulation inhibits cortical spreading depression but not trigeminocervical activation in animal models of migraine. Headache 50:S58

    Google Scholar 

  215. Ingvardsen BK, Laursen H, Olsen UB, Hansen AJ (1997) Possible mechanism of c-fos expression in trigeminal nucleus caudalis following cortical spreading depression. Pain 72:407–415

    CAS  PubMed  Google Scholar 

  216. Supornsilpchai W, Sanguanrangsirikul S, Maneesri S, Srikiatkhachorn A (2006) Serotonin depletion, cortical spreading depression, and trigeminal nociception. Headache 46:34–39

    PubMed  Google Scholar 

  217. Moskowitz MA, Nozaki K, Kraig RP (1993) Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci 13:1167–1177

    PubMed Central  CAS  PubMed  Google Scholar 

  218. Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50:83–107

    CAS  PubMed  Google Scholar 

  219. Ebersberger A, Schaible HG, Averbeck B, Richter F (2001) Is there a correlation between spreading depression, neurogenic inflammation, and nociception that might cause migraine headache? Ann Neurol 49:7–13

    CAS  PubMed  Google Scholar 

  220. Bolay H et al (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8:136–142

    CAS  PubMed  Google Scholar 

  221. Zhang X et al (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69:855–865

    PubMed Central  PubMed  Google Scholar 

  222. Karatas H et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339:1092–1095

    CAS  PubMed  Google Scholar 

  223. Read SJ, Hirst WD, Upton N, Parsons AA (2001) Cortical spreading depression produces increased cGMP levels in cortex and brain stem that is inhibited by tonabersat (SB-220453) but not sumatriptan. Brain Res 891:69–77

    CAS  PubMed  Google Scholar 

  224. Goadsby PJ, Ferrari MD, Csanyi A, Olesen J, Mills JG (2009) Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia 29(7):742–750

    CAS  PubMed  Google Scholar 

  225. Noseda R, Constandil L, Bourgeais L, Chalus M, Villanueva L (2010) Changes of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J Neurosci 30:14420–14429

    CAS  PubMed  Google Scholar 

  226. Lambert GA, Hoskin KL, Zagami AS (2008) Cortico-NRM influences on trigeminal neuronal sensation. Cephalalgia 28:640–652

    CAS  PubMed  Google Scholar 

  227. Lambert GA, Michalicek J, Storer RJ, Zagami AS (1999) Effect of cortical spreading depression on activity of trigeminovascular sensory neurons. Cephalalgia 19:631–638

    CAS  PubMed  Google Scholar 

  228. Andreou AP, Sprenger T, Goadsby PJ (2012) Cortical spreading depression-evoked discharges on trigeminothalamic neurons. Headache 52:900

    Google Scholar 

  229. Andreou AP, Sprenger T, Goadsby PJ (2013) Cortical modulation of thalamic function during cortical spreading depression- unraveling a new central mechanism involved in migraine aura. J Headache Pain 14:16

    Google Scholar 

  230. van den Maagdenberg AM, Haan J, Terwindt GM, Ferrari MD (2007) Migraine: gene mutations and functional consequences. Curr Opin Neurol 20:299–305

    PubMed  Google Scholar 

  231. Leo L et al (2011) Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet 7:e1002129

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Eikermann-Haerter K et al (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 119:99–109

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Tottene A et al (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron 61:762–773

    CAS  PubMed  Google Scholar 

  234. Langford DJ et al (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7:447–449

    CAS  PubMed  Google Scholar 

  235. Chanda ML et al (2013) Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain 154:1254–1262

    PubMed  Google Scholar 

  236. Mathew R et al (2011) Immunohistochemical characterization of calcitonin gene-related peptide in the trigeminal system of the familial hemiplegic migraine 1 knock-in mouse. Cephalalgia 31:1368–1380

    PubMed  Google Scholar 

  237. Hansen JM et al (2008) Familial hemiplegic migraine type 2 does not share hypersensitivity to nitric oxide with common types of migraine. Cephalalgia 28:367–375

    CAS  PubMed  Google Scholar 

  238. Hansen JM, Thomsen LL, Olesen J, Ashina M (2008) Calcitonin gene-related peptide does not cause the familial hemiplegic migraine phenotype. Neurology 71:841–847

    CAS  PubMed  Google Scholar 

  239. Park J et al (2014) Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: a Fos protein study. Neurobiol Dis 64:1–7

    CAS  PubMed  Google Scholar 

  240. Moon H-S et al (2010) Altered responses in the descending modulatory system of transgenic mice with the CACNA1A mutation. Headache 50:67

    Google Scholar 

  241. Xu Y et al (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434:640–644

    CAS  PubMed  Google Scholar 

  242. Brennan KC et al (2013) Casein kinase idelta mutations in familial migraine and advanced sleep phase. Sci Transl Med 5:183ra156, 181-111

    Google Scholar 

  243. Oshinsky ML, Gomonchareonsiri S (2007) Episodic dural stimulation in awake rats: a model for recurrent headache. Headache 47:1026–1036

    PubMed Central  PubMed  Google Scholar 

  244. Stucky NL et al (2011) Sex differences in behavior and expression of CGRP-related genes in a rodent model of chronic migraine. Headache 51:674–692

    PubMed Central  PubMed  Google Scholar 

  245. Melo-Carrillo A, Lopez-Avila A (2013) A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia 33:1096–1105

    PubMed  Google Scholar 

  246. Dong Z, Jiang L, Wang X, Wang X, Yu S (2011) Nociceptive behaviors were induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus in conscious adult rats and reduced by morphine and rizatriptan benzoate. Brain Res 1368:151–158

    CAS  PubMed  Google Scholar 

  247. Pradhan AA et al (2014) Characterization of a novel model of chronic migraine. Pain 155:269–274

    PubMed Central  CAS  PubMed  Google Scholar 

  248. Pradhan AA, Smith ML, Zyuzin J, Charles A (2014) delta-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol 171:2375–2384

    CAS  PubMed  Google Scholar 

  249. Oshinsky ML et al (2012) Spontaneous trigeminal allodynia in rats: a model of primary headache. Headache 52:1336–1349

    PubMed Central  PubMed  Google Scholar 

  250. Ashkenazi A, Mushtaq A, Yang I, Oshinsky ML (2009) Ictal and interictal phonophobia in migraine-a quantitative controlled study. Cephalalgia 29:1042–1048

    CAS  PubMed  Google Scholar 

  251. Romero-Reyes M et al (2013) Spontaneous behavioral responses in the orofacial region: a model of trigeminal pain in mouse. Headache 53:137–151

    PubMed Central  PubMed  Google Scholar 

  252. Lipton RB et al (2008) Cutaneous allodynia in the migraine population. Ann Neurol 63:148–158

    PubMed Central  PubMed  Google Scholar 

  253. De Felice M et al (2010) Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers. Brain 133:2475–2488

    PubMed Central  PubMed  Google Scholar 

  254. De Felice M et al (2010) Triptan-induced latent sensitization: a possible basis for medication overuse headache. Ann Neurol 67:325–337

    PubMed  Google Scholar 

  255. De Felice M, Porreca F (2009) Opiate-induced persistent pronociceptive trigeminal neural adaptations: potential relevance to opiate-induced medication overuse headache. Cephalalgia 29:1277–1284

    PubMed  Google Scholar 

  256. De Felice M, Ossipov MH, Porreca F (2011) Persistent medication-induced neural adaptations, descending facilitation, and medication overuse headache. Curr Opin Neurol 24:193–196

    PubMed  Google Scholar 

  257. Green AL et al (2013) Increased susceptibility to cortical spreading depression in an animal model of medication-overuse headache. Cephalalgia 34:594–604

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna P. Andreou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andreou, A.P., Oshinsky, M.L. (2015). Animal Models of Migraine. In: Ashina, M., Geppetti, P. (eds) Pathophysiology of Headaches. Headache. Springer, Cham. https://doi.org/10.1007/978-3-319-15621-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15621-7_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15620-0

  • Online ISBN: 978-3-319-15621-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics