Skip to main content

Electrochemical Synthesis of Metal Chalogenide Nanorods, Nanotubes, Segmented Nanorods, and Coaxial Nanorods

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Electrodeposition is a key technique to create nanostructures of metals and inorganic semiconductors. Unlike the electrodeposition of metals, the fabrication of nanostructures of binary semiconductors with desired crystallinity and stoichiometry is not straightforward. Herein, we describe the optimization of conditions for the electrodeposition of stoichiometry and crystalline cadmium selenide (CdSe), cadmium telluride (CdTe), and CdSe/CdTe nanostructures. We first identified the optimal conditions for the electrodeposition of CdSe and CdTe with 1:1 stoichiometry by varying the concentrations of Cd2+ and SeO2 (or TeO2) and optimizing the electrodeposition potential. We then optimized the pH of the electrolysis solution for increasing the crystallinity of the deposited structures. We then tested the efficacy of our electrodeposition conditions on substrates such as gold, nickel, and indium tin oxide. We used the optimized conditions to electrodeposit semiconductors within anodic aluminum oxide (AAO) membranes to create oriented CdSe and CdTe nanorods, CdSe/CdTe segmented nanorods, and CdSe/CdTe coaxial nanorods. These optimized electrodeposition conditions add a valuable tool in the synthetic toolbox for the synthesis of crystalline semiconductor nanostructures for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  CAS  Google Scholar 

  2. Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu Rev Phys Chem 41(1):477–496

    Article  CAS  Google Scholar 

  3. Chhowalla MSS, Hyeon SS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275

    Article  Google Scholar 

  4. Bruchez M Jr et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  CAS  Google Scholar 

  5. Chan WC et al (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  CAS  Google Scholar 

  6. Mattoussi H et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150

    Article  CAS  Google Scholar 

  7. Coe S et al (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917):800

    Article  CAS  Google Scholar 

  8. Klimov VI et al (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290(5490):314–317

    Article  CAS  Google Scholar 

  9. Park JH et al (2004) White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer. Nanotechnology 15(9):1217–1220

    Article  CAS  Google Scholar 

  10. Gur I et al (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5747):462–465

    Article  CAS  Google Scholar 

  11. Liu J et al (2004) Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc 126(21):6550–6551

    Article  CAS  Google Scholar 

  12. Han L et al (2006) Synthesis of high quality zinc-blende CdSe nanocrystals and their applications in hybrid solar cells. Nanotechnology 17:4736–4742

    Article  CAS  Google Scholar 

  13. Huynh WU et al (2003) Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv Funct Mater 13(1):73–79

    Article  CAS  Google Scholar 

  14. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427

    Article  CAS  Google Scholar 

  15. Meieszawaska AJ et al (2007) The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 3(5):722–756

    Article  Google Scholar 

  16. Ouyang L et al (2007) Catalyst-assisted solution-liquid–solid synthesis of CdS/CdSe nanorod heterostructures. J Am Chem Soc 129(1):133–138

    Article  CAS  Google Scholar 

  17. Goldberger J et al (2005) ZnO nanowire transistors. J Phys Chem B Lett 109:9–14

    Article  CAS  Google Scholar 

  18. Hu JQ et al (2003) Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chem Mater 15:305–308

    Article  CAS  Google Scholar 

  19. Choi S-J et al (2001) Electrochemical preparation of cadmium selenide nanoparticles by the use of molecular templates. J Electrochem Soc 148(9):C569–C573

    Article  CAS  Google Scholar 

  20. Klein JD et al (1993) Electrochemical fabrication of cadmium chalcogenide microdiode arrays. Chem Mater 5(7):902–904

    Article  CAS  Google Scholar 

  21. Kressin AM et al (1991) Synthesis of stoichiometric cadmium selenide films via sequential monolayer electrodeposition. Chem Mater 3:1015–1020

    Article  CAS  Google Scholar 

  22. Li Q et al (2006) Luminescent polycrystalline cadmium selenide nanowires synthesized by cyclic electrodeposition/stripping coupled with step edge decoration. Chem Mater 18:3432–3441

    Article  CAS  Google Scholar 

  23. Ma C et al (2004) Single-crystal CdSe nanosaws. J Am Chem Soc 126:708–709

    Article  CAS  Google Scholar 

  24. Shen CM, Zhang XG, Hl L (2001) DC electrochemical deposition of CdSe nanorods array using porous anodic aluminum oxide template. Mater Sci Eng A 303:19–23

    Article  Google Scholar 

  25. Zhang BP, Yasuda T (1997) Naturally formed ZnCdSe quantum dots on ZnSe (110) surfaces. Appl Phys Lett 70(18):2413

    Article  CAS  Google Scholar 

  26. Liao MCH, Chang YH (1997) Fabrication of ZnSe quantum dots under Volmer-Weber mode by metalorganic chemical vapor deposition. Appl Phys Lett 70(17):2256

    Article  CAS  Google Scholar 

  27. Bourret-Courchesne ED (1996) Incorporation of hydrogen in nitrogen and arsenic doped ZnSe epitaxial layers grown by. Appl Phys Lett 68(17):2418

    Article  CAS  Google Scholar 

  28. Deng ZX et al (2002) Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg Chem 41(4):869–873

    Article  CAS  Google Scholar 

  29. Li YD et al (1998) Nonaqueous synthesis of CdS nanorod semiconductor. Chem Mater 10(9):2301–2303

    Article  CAS  Google Scholar 

  30. Wang C et al (1999) An aqueous approach to ZnSe and CdSe semiconductor nanocrystals. Mater Chem Phys 60(1):99–102

    Article  CAS  Google Scholar 

  31. Peng Q et al (2001) Low-Temperature Elemental-Direct-Reaction Route to II-VI Semiconductor Nanocrystalline ZnSe and CdSe. Inorg Chem 40(16):3840–3841

    Article  CAS  Google Scholar 

  32. Ge J-P, Li Y-D, Yang G-Q (2002) Mechanism of aqueous ultrasonic reaction: controlled synthesis, luminescence properties of amorphous cluster and nanocrystalline CdSe. Chem Commun 17:1826–1827

    Article  Google Scholar 

  33. Duan X, Lieber CM (2000) General synthesis of compound semiconductor nanowires. Adv Mater 12(4):298–302

    Article  CAS  Google Scholar 

  34. Licht S (1987) A description of energy conversion in photoelectrochemical solar cells. Nature 330:148–151

    Article  CAS  Google Scholar 

  35. Lokhande CD, Pawar SH (1989) Electrodeposition of thin film semiconductors. Phys Status Solidi (a) 111(1):17–40

    Article  CAS  Google Scholar 

  36. Mishra KK, Rajeshwar K (1989) A re-examination of the mechanisms of electrodeposition of CdX and ZnX (X = Se, Te) semiconductors by the cyclic photovoltammetric technique. J Electroanal Chem 273(1–2):169–182

    Article  CAS  Google Scholar 

  37. Routkevitch D et al (1996) Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. J Phys Chem 100:14037–14047

    Article  CAS  Google Scholar 

  38. Dickey MD et al (2008) Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation. ACS Nano 2:800–808

    Article  CAS  Google Scholar 

  39. Peña DJ et al (2002) Template growth of photoconductive metal-CdSe-metal nanowires. J Phys Chem 106:7458–7462

    Article  Google Scholar 

  40. Gudiksen MS et al (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872):617–620

    Article  CAS  Google Scholar 

  41. Lauhon LJ et al (2002) Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420(6911):57–61

    Article  CAS  Google Scholar 

  42. Li Y et al (2006) Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett 6(7):1468–1473

    Article  CAS  Google Scholar 

  43. Bjork MT et al (2002) One-dimensional steeplechase for electrons realized. Nano Lett 2(2):87–89

    Article  Google Scholar 

  44. Verheijen MA et al (2006) Growth kinetics of heterostructured GaP-GaAs nanowires. J Am Chem Soc 128(4):1353–1359

    Article  CAS  Google Scholar 

  45. Wu Y et al (2004) Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430(6995):61–65

    Article  CAS  Google Scholar 

  46. Yang C, Zhong Z, Lieber CM (2005) Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 310(5752):1304–1307

    Article  CAS  Google Scholar 

  47. Ho GW et al (2004) Self-assembled growth of coaxial crystalline nanowires. Nano Lett 4(10):2023–2026

    Article  CAS  Google Scholar 

  48. Yin L-W et al (2007) Tailoring the optical properties of epitaxially grown biaxial ZnO/Ge, and coaxial ZnO/Ge/ZnO and Ge/ZnO/Ge heterostructures. Adv Funct Mater 17:270–276

    Article  CAS  Google Scholar 

  49. Gong NW et al (2008) Au(Si)-filled β-Ga2O3 nanotubes as wide range high temperature nanothermometers. Appl Phys Lett 92(7):073101–073103

    Article  Google Scholar 

  50. Vomiero A et al (2007) Preparation of radial and longitudinal nanosized heterostructures of In2O3 and SnO2. Nano Lett 7(12):3553–3558

    Article  CAS  Google Scholar 

  51. Dong A et al (2007) Solution-liquid–solid (SLS) growth of ZnSe-ZnTe quantum wires having axial heterojunctions. Nano Lett 7(5):1308–1313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhandapani Venkataraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Chévere-Trinidad, N.L., Gurbuz, S., Kramer, J., Venkataraman, D. (2016). Electrochemical Synthesis of Metal Chalogenide Nanorods, Nanotubes, Segmented Nanorods, and Coaxial Nanorods. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_24

Download citation

Publish with us

Policies and ethics