Skip to main content

Fructose Feeding Changes Taurine Homeostasis in Wistar Rats

  • Conference paper
Taurine 9

Abstract

High-fructose intake has been shown to induce dyslipidemia and other hallmarks of the metabolic syndrome and taurine seems able to ameliorate these effects. However, the effects of high fructose intake on taurine homeostasis are currently unknown. Here we examined the effects of a high-fructose diet with or without oral taurine supplementation (2 % in drinking water) for 6 weeks in Wistar rats.

Fructose significantly decreased hepatic triglyceride content, an increase in plasma triglyceride content but had no effect on plasma non-esterified fatty acids or total cholesterol, with taurine supplementation having no effect on these parameters.

A high fructose diet significantly decreased hepatic taurine content, increased EDL and soleus muscle taurine content and had no effect on plasma taurine content. Fructose increased taurine transporter (TauT) mRNA in liver, but not in EDL or soleus muscle. Interestingly, fructose decreased cysteinesulfinic acid decarboxylase (CSAD) and cysteine dioxygenase (CDO) mRNA levels in EDL muscle, and decreased cysteamine dioxygenase (ADO) mRNA levels in soleus muscle. Fructose did not cause any changes in CSAD, CDO or ADO mRNA levels in liver.

Taurine supplementation elevated plasma and skeletal muscle taurine content, but decreased liver taurine content. Taurine decreased TauT mRNA levels in both EDL and soleus muscle, but increased it in liver. Furthermore, taurine decreased CSAD mRNA levels in liver and soleus muscle as well as decreased CDO mRNA levels in soleus muscle.

These data suggest that taurine transport and biosynthesis are affected by high fructose intake in a tissue specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADO:

Cysteamine dioxygenase

CDO:

Cysteine dioxygenase

CSAD:

Cysteinesulfinic acid decarboxylase

EDL:

Extensor digitorum longus

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

NEFA:

Non-esterified fatty acids

NS:

Non-significant

TauT:

Taurine transporter

References

  • Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G et al (2005) Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45(5):1012–1018

    Article  CAS  PubMed  Google Scholar 

  • Anderson CMH, Howard A, Walters JRF, Ganapathy V, Thwaites DT (2009) Taurine uptake across the human intestinal brush-border membrane is via two transporters: H + -coupled PAT1 (SLC36A1) and Na + - and Cl(−)-dependent TauT (SLC6A6). J Physiol 587(Pt 4):731–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bantle JP (2009) Dietary fructose and metabolic syndrome and diabetes. J Nutr 139(6):1263S–1268S

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bantle JP, Raatz SK, Thomas W, Georgopoulos A (2000) Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 72(5):1128–1134

    CAS  PubMed  Google Scholar 

  • Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab 2(1):5

    Article  Google Scholar 

  • Chesney RW, Jolly K, Zelikovic I, Iwahashi C, Lohstroh P (1989) Increased Na + -taurine symporter in rat renal brush border membranes: preformed or newly synthesized? FASEB J Off Publ Fed Am Soc Exp Biol 3(9):2081–2085

    CAS  Google Scholar 

  • Crapo PA, Kolterman OG (1984) The metabolic effects of 2-week fructose feeding in normal subjects. Am J Clin Nutr 39(4):525–534

    CAS  PubMed  Google Scholar 

  • El Mesallamy HO, El-Demerdash E, Hammad LN, El Magdoub HM (2010) Effect of taurine supplementation on hyperhomocysteinemia and markers of oxidative stress in high fructose diet induced insulin resistance. Diabetol Metab Syndr 2:46

    Article  PubMed Central  PubMed  Google Scholar 

  • Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M et al (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61(5):1115–1119

    CAS  PubMed  Google Scholar 

  • Glass EN, Odle J, Baker DH (1992) Urinary taurine excretion as a function of taurine intake in adult cats. J Nutr 122(5):1135–1142

    CAS  PubMed  Google Scholar 

  • Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications. Diabetes Metab Res Rev 17(5):330–346

    Article  CAS  PubMed  Google Scholar 

  • Heller-Stilb B, van Roeyen C, Rascher K, Hartwig H-G, Huth A, Seeliger MW et al (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J Off Publ Fed Am Soc Exp Biol 16(2):231–233

    CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72(1):101–163

    CAS  PubMed  Google Scholar 

  • Jeevanandam M, Ramias L, Schiller WR (1991) Altered plasma free amino acid levels in obese traumatized man. Metabolism 40(4):385–390

    Article  CAS  PubMed  Google Scholar 

  • Jerkins AA, Jones DD, Kohlhepp EA (1998) Cysteine sulfinic acid decarboxylase mRNA abundance decreases in rats fed a high-protein diet. J Nutr 128(11):1890–1895

    CAS  PubMed  Google Scholar 

  • Larsen LH, Orstrup LKH, Hansen SH, Grunnet N, Quistorff B, Mortensen OH (2013) The effect of long-term taurine supplementation and fructose feeding on glucose and lipid homeostasis in Wistar rats. Adv Exp Med Biol 776:39–50

    Article  CAS  PubMed  Google Scholar 

  • De Luca G, Calpona PR, Caponetti A, Romano G, Di Benedetto A, Cucinotta D et al (2001) Taurine and osmoregulation: platelet taurine content, uptake, and release in type 2 diabetic patients. Metabolism 50(1):60–64

    Article  PubMed  Google Scholar 

  • Matsuda M, Asano Y (2012) A simple assay of taurine concentrations in food and biological samples using taurine dioxygenase. Anal Biochem 427(2):121–123

    Article  CAS  PubMed  Google Scholar 

  • Merheb M, Daher RT, Nasrallah M, Sabra R, Ziyadeh FN, Barada K (2007) Taurine intestinal absorption and renal excretion test in diabetic patients: a pilot study. Diabetes Care 30(10):2652–2654

    Article  PubMed  Google Scholar 

  • Mochizuki T, Satsu H, Nakano T, Shimizu M (2004) Regulation of the human taurine transporter by TNF-alpha and an anti-inflammatory function of taurine in human intestinal Caco-2 cells. BioFactors Oxf Engl 21(1–4):141–144

    Article  CAS  Google Scholar 

  • Murakami S, Kondo Y, Nagate T (2000) Effects of long-term treatment with taurine in mice fed a high-fat diet: improvement in cholesterol metabolism and vascular lipid accumulation by taurine. Adv Exp Med Biol 483:177–186

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D et al (2009) The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 9(3):252–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nandhini ATA, Anuradha CV (2002) Taurine modulates kallikrein activity and glucose metabolism in insulin resistant rats. Amino Acids 22(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Nandhini ATA, Thirunavukkarasu V, Anuradha CV (2004) Stimulation of glucose utilization and inhibition of protein glycation and AGE products by taurine. Acta Physiol Scand 181(3):297–303

    Article  CAS  PubMed  Google Scholar 

  • Nandhini ATA, Thirunavukkarasu V, Anuradha CV (2005a) Taurine modifies insulin signaling enzymes in the fructose-fed insulin resistant rats. Diabetes Metab 31(4 Pt 1):337–344

    Article  CAS  PubMed  Google Scholar 

  • Nandhini ATA, Thirunavukkarasu V, Anuradha CV (2005b) Taurine prevents collagen abnormalities in high fructose-fed rats. Indian J Med Res 122(2):171–177

    CAS  PubMed  Google Scholar 

  • Nandhini ATA, Thirunavukkarasu V, Anuradha CV (2005c) Taurine prevents collagen abnormalities in high fructose-fed rats. Indian J Med Res 122:171–177

    Google Scholar 

  • Nandhini TA, Anuradha CV (2003) Inhibition of lipid peroxidation, protein glycation and elevation of membrane ion pump activity by taurine in RBC exposed to high glucose. Clin Chim Acta Int J Clin Chem 336(1–2):129–135

    Article  CAS  Google Scholar 

  • Odle J, Glass EN, Czarnecki-Maulden GL, Baker DH (1992) Urinary excretion of taurine as a function of taurine intake: potential for estimating taurine bioavailability in the adult cat. Adv Exp Med Biol 315:55–62

    Article  CAS  PubMed  Google Scholar 

  • Perret P, Slimani L, Briat A, Villemain D, Halimi S, Demongeot J et al (2007) Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport. Eur J Nucl Med Mol Imaging 34(5):734–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reibel DK, Shaffer JE, Kocsis JJ, Neely JR (1979) Changes in taurine content in heart and other organs of diabetic rats. J Mol Cell Cardiol 11(8):827–830

    Article  CAS  PubMed  Google Scholar 

  • Samuel VT (2011) Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab 22(2):60–65

    Article  CAS  PubMed  Google Scholar 

  • Sethupathy S, Elanchezhiyan C, Vasudevan K, Rajagopal G (2002) Antiatherogenic effect of taurine in high fat diet fed rats. Indian J Exp Biol 40(10):1169–1172

    CAS  PubMed  Google Scholar 

  • Simmons CR, Liu Q, Huang Q, Hao Q, Begley TP, Karplus PA et al (2006) Crystal structure of mammalian cysteine dioxygenase. J Biol Chem 281(27):18723–18733

    Article  CAS  PubMed  Google Scholar 

  • Stark AH, Timar B, Madar Z (2000) Adaptation of Sprague Dawley rats to long-term feeding of high fat or high fructose diets. Eur J Nutr 39(5):229–234

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH, Dominy JE (2006) Surprising insights that aren’t so surprising in the modeling of sulfur amino acid metabolism. Amino Acids 30(3):251–256

    Article  CAS  PubMed  Google Scholar 

  • Stipanuk MH, Dominy JE, Lee J-I, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136(6 Suppl):1652S–1659S

    CAS  PubMed  Google Scholar 

  • Tappy L, Lê KA, Tran C, Paquot N (2010) Fructose and metabolic diseases: new findings, new questions. Nutrition 26(11–12):1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332(1–2):145–159

    Article  CAS  PubMed  Google Scholar 

  • Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y et al (2006) Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147(7):3276–3284

    Article  CAS  PubMed  Google Scholar 

  • Ueki I, Roman HB, Hirschberger LL, Junior C, Stipanuk MH (2012) Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxygenase. Am J Physiol Endocrinol Metab 302(10):E1292–E1299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Warskulat U, Flögel U, Jacoby C, Hartwig H-G, Thewissen M, Merx MW et al (2004) Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J Off Publ Fed Am Soc Exp Biol 18(3):577–579

    CAS  Google Scholar 

  • Wieland O (1984) Methods of enzymatic analysis vol. VI. Verlag Chemie, Weinheim, Dearfield Beach, Florida, Basel. pp. 504–510

    Google Scholar 

  • Wijekoon EP, Skinner C, Brosnan ME, Brosnan JT (2004) Amino acid metabolism in the Zucker diabetic fatty rat: effects of insulin resistance and of type 2 diabetes. Can J Physiol Pharmacol 82(7):506–514

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Tanaka T, Noguchi T (1995) Effect of cysteine on expression of cystathionine beta-synthase in the rat liver. J Nutr Sci Vitaminol (Tokyo) 41(2):197–205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Danish Strategic Research Council grant #09-067124 and #09-059921, Danish Medical Research Council grant #271-07-0732, by Købmand i Odense Johann og Hanne Weimann f. Seedorffs Legat, Gangstedfonden, Ernst Fischers mindelegat, Eva og Hans Carl Adolfs Mindelegat, and Direktør Emil Hertz og Hustru Inger Hertz Fond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Hartvig Mortensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Larsen, L.H., Ørstrup, L.K.H., Hansen, S.H., Grunnet, N., Quistorff, B., Mortensen, O.H. (2015). Fructose Feeding Changes Taurine Homeostasis in Wistar Rats. In: Marcinkiewicz, J., Schaffer, S. (eds) Taurine 9. Advances in Experimental Medicine and Biology, vol 803. Springer, Cham. https://doi.org/10.1007/978-3-319-15126-7_55

Download citation

Publish with us

Policies and ethics