Skip to main content

All-Optical Pulse Shaping for Highest Spectral Efficiency

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 194))

Abstract

Pulse shaping gives communications engineers another degree of freedom in designing a link. It holds promise to allow extending transmission reach, achieve optical multiplexing at highest spectral efficiency or to limit nonlinear distortions. A variety of pulse shapes—rectangular, sinc, raised cosine to cite just a few—have been investigated but the important question is how optical transmitters can generate such pulses at the necessary speed. Should the transmitter be realized in the digital domain, the all-optical domain or can it be implemented as a hybrid? In this chapter, the fundamentals for pulse shaping in transmitters and receivers are reviewed. A particular emphasis is on orthogonal frequency division multiplexing (OFDM) where the system’s data are encoded onto subcarriers with a rectangularly shaped impulse response, and Nyquist pulse shaping where the symbols are carried by Nyquist pulses. Electronic, digital and optical processors are described and recent experimental demonstrations are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W. Shieh, C. Athaudage, Coherent optical orthogonal frequency division multiplexing, in Electronics Letters (Institution of Engineering and Technology, 2006), pp. 587–589

    Google Scholar 

  2. R.W. Chang, Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. J. 45, 1775–1796 (1966)

    Article  Google Scholar 

  3. A.J. Lowery, L. Du, J. Armstrong, Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems. in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, Anaheim, California, 2006), p. PDP39

    Google Scholar 

  4. I.B. Djordjevic, B. Vasic, Orthogonal frequency division multiplexing for high-speed optical transmission. Opt. Express 14, 3767–3775 (2006)

    Article  ADS  Google Scholar 

  5. N. Cvijetic, L. Xu, T. Wang, Adaptive PMD compensation using OFDM in long-haul 10 Gb/s DWDM systems, in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, Anaheim, California, 2007), p. OTuA5

    Google Scholar 

  6. S.L. Jansen, I. Morita, T.C. Schenk, H. Tanaka, Long-haul transmission of16 × 52.5 Gbits/s polarization-division- multiplexed OFDM enabled by MIMO processing (Invited). J. Opt. Netw. 7, 173–182 (2008)

    Article  Google Scholar 

  7. E. Yamada, A. Sano, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, K. Yonenaga, Y. Miyamoto, K. Ishihara, and Y. Takatori, 1 Tb/s (111 Gb/s/ch × 10ch) no-guard-interval CO-OFDM transmission over 2100 km DSF, in Opto-electronics and Communications Conference, Sydney (2008)

    Google Scholar 

  8. S. Chandrasekhar, X. Liu, B. Zhu, D. Peckham, Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM super channel over 7200-km of ultra-large-area fiber, in ECOC 2009 (2009)

    Google Scholar 

  9. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, 26 Tbit s(-1) line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photonics 5, 364–371 (2011)

    Article  ADS  Google Scholar 

  10. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, J. Leuthold, Simple all-optical FFT scheme enabling Tbit/s real-time signal processing. Opt. Express 18, 9324–9340 (2010)

    Article  ADS  Google Scholar 

  11. H. Nyquist, Certain topics in telegraph transmission theory. Trans. Am. Inst. Electrical Eng. (A. I. E. E.) 47, 617–644 (1928)

    Google Scholar 

  12. G. Bosco, V. Curri, A. Carena, P. Poggiolini, F. Forghieri, On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. J. Lightwave Technol. 29, 53–61 (2011)

    Article  ADS  Google Scholar 

  13. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM. Opt. Express 20, 317–337 (2012)

    Article  ADS  Google Scholar 

  14. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bauerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P.C. Schindler, C. Koos, W. Freude, J. Leuthold, 512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz. Opt. Express 20, 6439–6447 (2012)

    Article  ADS  Google Scholar 

  15. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, J. Leuthold, Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd. IEEE Photonic Tech. L 22, 1601–1603 (2010)

    Article  ADS  Google Scholar 

  16. J. Leuthold, W. Freude, Optical OFDM and Nyquist multiplexing, in Optical Fiber Telecommunications VIB, ed. by I.P. Kaminow, T. Li, A.E. Willner (Academic Press, 2013)

    Google Scholar 

  17. R. Schmogrow, M. Winter, D. Hillerkuss, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, Real-time OFDM transmitter beyond 100 Gbit/s. Opt. Express 19, 12740–12749 (2011)

    Article  Google Scholar 

  18. R. Freund, No, x, M. lle, C. Schmidt-Langhorst, R. Ludwig, C. Schubert, G. Bosco, A. Carena, P. Poggiolini, Oxenl, x00F, L. We, M. Galili, H.C.H. Mulvad, M. Winter, D. Hillerkuss, R. Schmogrow, W. Freude, J. Leuthold, A.D. Ellis, F.C.G. Gunning, J. Zhao, P. Frascella, S.K. Ibrahim, N.M. Suibhne, Single- and multi-carrier techniques to build up Tb/s per channel transmission systems, in Transparent Optical Networks (ICTON), 2010 12th International Conference on (2010), pp. 1–7

    Google Scholar 

  19. M.E. Marhic, Discrete Fourier transforms by single-mode star networks. Opt. Lett. 12, 63–65 (1987)

    Article  ADS  Google Scholar 

  20. H. Sanjoh, E. Yamada, Y. Yoshikuni, Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz, in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, 401–402 (2002)

    Google Scholar 

  21. K. Takiguchi, M. Oguma, H. Takahashi, A. Mori, Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception, in Electronics Letters (Institution of Engineering and Technology, 2010), pp. 575–576

    Google Scholar 

  22. G. Cincotti, Fiber wavelet filters [and planar waveguide couplers for full-wavelength demultiplexers]. IEEE J. Quantum Electron. 38, 1420–1427 (2002)

    Article  ADS  Google Scholar 

  23. G. Cincotti, Full optical encoders/decoders for photonic IP routers. J. Lightwave Technol. 22, 337–342 (2004)

    Article  ADS  Google Scholar 

  24. M. Nazarathy, D.M. Marom, W. Shieh, Optical comb and filter bank (De)Mux enabling 1 Tb/s orthogonal sub-band multiplexed CO-OFDM free of ADC/DAC limits, in Optical Communication, 2009. ECOC ‘09. 35th European Conference on (2009), pp. 1–2

    Google Scholar 

  25. M.K. Smit, C. Van Dam, PHASAR-based WDM-devices: principles, design and applications. IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996)

    Article  Google Scholar 

  26. A.J. Lowery, Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers. Opt. Express 18, 14129–14143 (2010)

    Article  Google Scholar 

  27. K. Lee, C.T.D. Thai, J.-K.K. Rhee, All optical discrete fourier transform processor for 100 Gbps OFDM transmission. Opt. Express 16, 4023–4028 (2008)

    Article  ADS  Google Scholar 

  28. A.J. Lowery, L. Du, All-optical OFDM transmitter design using AWGRs and low-bandwidth modulators. Opt. Express 19, 15696–15704 (2011)

    Article  ADS  Google Scholar 

  29. R.P. Giddings, X.Q. Jin, E. Hugues-Salas, E. Giacoumidis, J.L. Wei, J.M. Tang, Experimental demonstration of a record high 11.25 Gb/s real-time optical OFDM transceiver supporting 25 km SMF end-to-end transmission in simple IMDD systems. Opt. Express 18, 5541–5555 (2010)

    Article  ADS  Google Scholar 

  30. R. Schmogrow, M. Meyer, P.C. Schindler, B. Nebendahl, M. Dreschmann, J. Meyer, A. Josten, D. Hillerkuss, S. Ben-Ezra, J. Becker, C. Koos, W. Freude, J. Leuthold, Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling. Opt. Express 22, 193–209 (2014)

    Article  ADS  Google Scholar 

  31. B. Inan, S. Adhikari, O. Karakaya, P. Kainzmaier, M. Mocker, H. von Kirchbauer, N. Hanik, S.L. Jansen, Real-time 93.8-Gb/s polarization-multiplexed OFDM transmitter with 1024-point IFFT. Opt. Express 19, B64–B68 (2011)

    Article  Google Scholar 

  32. D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, J. Leuthold, High-quality optical frequency comb by spectral slicing of spectra broadened by SPM. IEEE Photonics J. 5, 7201011 (7201011 pp) (2013)

    Google Scholar 

  33. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, J. Leuthold, Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photonic Technol. Lett. 24, 61–63 (2012)

    Article  ADS  Google Scholar 

  34. Fujitsu, Soft-Decision FEC Benefits for 100G (Fujitsu Network Communications Inc., 2012)

    Google Scholar 

  35. Z. Xiang, L.E. Nelson, P. Magill, R. Isaac, Z. Benyuan, D.W. Peckham, P.I. Borel, K. Carlson, PDM-Nyquist-32QAM for 450-Gb/s Per-Channel WDM Transmission on the 50 GHz ITU-T Grid. J. Lightwave Technol. 30, 553–559 (2012)

    Article  ADS  Google Scholar 

  36. T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, K. Ishihara, Nonlinear tolerant spectrally-efficient transmission using PDM 64-QAM single carrier FDM with digital pilot-tone. J. Lightwave Technol. 30, 3805–3815 (2012)

    Article  ADS  Google Scholar 

  37. C. Jin-Xing, C.R. Davidson, A. Lucero, Z. Hongbin, D.G. Foursa, O.V. Sinkin, W.W. Patterson, A.N. Pilipetskii, G. Mohs, N.S. Bergano, 20 Tbit/s transmission over 6860 km with sub-nyquist channel spacing. J. Lightwave Technol. 30, 651–657 (2012)

    Article  ADS  Google Scholar 

  38. A.H. Gnauck, P.J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, D.W. Peckham, Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 29, 373–377 (2011)

    Article  Google Scholar 

  39. R. Schmogrow, R. Bouziane, M. Meyer, P.A. Milder, P.C. Schindler, R.I. Killey, P. Bayvel, C. Koos, W. Freude, J. Leuthold, Real-time OFDM or Nyquist pulse generation–which performs better with limited resources? Opt. Express 20, B543–B551 (2012)

    Article  Google Scholar 

  40. T. Hirooka, P. Ruan, P. Guan, M. Nakazawa, Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km. Opt. Express 20, 15001–15007 (2012)

    Article  ADS  Google Scholar 

  41. T. Hirooka, M. Nakazawa, Linear and nonlinear propagation of optical Nyquist pulses in fibers. Opt. Express 20, 19836–19849 (2012)

    Article  ADS  Google Scholar 

  42. G. Bosco, A. Carena, V. Curri, P. Poggiolini, F. Forghieri, Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems. IEEE Photonics Technol. Lett. 22, 1129–1131 (2010)

    Article  ADS  Google Scholar 

  43. J.G. Proakis, M. Salehi, Digital Communications (McGraw Hill, 2008)

    Google Scholar 

  44. M. Nakazawa, T. Hirooka, P. Ruan, P. Guan, Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train. Opt. Express 20, 1129–1140 (2012)

    Article  ADS  Google Scholar 

  45. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P.C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, Single-Laser 32.5 Tbit/s Nyquist WDM transmission. J. Opt. Commun. Netw. 4, 715–723 (2012)

    Google Scholar 

  46. A. Vedadi, M.A. Shoaie, C.-S. Brès, Near-Nyquist optical pulse generation with fiber optical parametric amplification. Opt. Express 20, B558–B565 (2012)

    Article  Google Scholar 

  47. R. Schmogrow, S. Ben-Ezra, P.C. Schindler, B. Nebendahl, C. Koos, W. Freude, J. Leuthold, Pulse-shaping with digital, electrical, and optical filters-A comparison. J. Lightwave Technol. 31, 2570–2577 (2013)

    Article  ADS  Google Scholar 

  48. L. Xiang, S. Chandrasekhar, Z. Benyuan, P.J. Winzer, A.H. Gnauck, D.W. Peckham, 448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-Grid ROADMs. J. Lightwave Technol. 29, 483–490 (2011)

    Article  ADS  Google Scholar 

  49. M.A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, T. Schneider, Optical sinc-shaped Nyquist pulses of exceptional quality. Nat. Commun. 4 Article No. 2898. (2013)

    Google Scholar 

  50. G. Baxter, S. Frisken, D. Abakoumov, Z. Hao, I. Clarke, A. Bartos, S. Poole, Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements, in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. OFC 2006 (2006), p. 3

    Google Scholar 

  51. H.N. Tan, K. Tanizawa, T. Inoue, T. Kurosu, S. Namiki, No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add–drop node. Opt. Lett. 38, 3287–3290 (2013)

    Article  ADS  Google Scholar 

  52. T. Hung Nguyen, T. Inoue, T. Kurosu, S. Namiki, Transmission and pass-drop operations in all-optical elastic network using Nyquist OTDM-WDM up to 2×344 Gbaud/channel, in OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS), 2013 18 th (2013), pp. 1–2

    Google Scholar 

  53. B. Washburn, R. Fox, N. Newbury, J. Nicholson, K. Feder, P. Westbrook, C. Jørgensen, Fiber-laser-based frequency comb with a tunable repetition rate. Opt. Express 12, 4999–5004 (2004)

    Article  ADS  Google Scholar 

  54. A. Ruehl, A. Marcinkevicius, M.E. Fermann, I. Hartl, 80 W, 120 fs Yb-fiber frequency comb. Opt. Lett. 35, 3015–3017 (2010)

    Article  ADS  Google Scholar 

  55. A. Bartels, R. Gebs, M.S. Kirchner, S.A. Diddams, Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser. Opt. Lett. 32, 2553–2555 (2007)

    Article  ADS  Google Scholar 

  56. T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332, 555–559 (2011)

    Article  ADS  Google Scholar 

  57. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T.J. Kippenberg, Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007)

    Article  ADS  Google Scholar 

  58. A.K. Mishra, R. Schmogrow, I. Tomkos, D. Hillerkuss, C. Koos, W. Freude, J. Leuthold, Flexible RF-Based Comb Generator. IEEE Photonic Technol. Lett. 25, 701–704 (2013)

    Article  ADS  Google Scholar 

  59. Y. Yamamoto, T. Komukai, K. Suzuki, A. Takada, Multicarrier light source with flattened spectrum using phase modulators and dispersion medium. J. Lightwave Technol. 27, 4297–4305 (2009)

    Article  ADS  Google Scholar 

  60. T. Yamamoto, T. Komukai, K. Suzuki, A. Takada, Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating, in Electronics Letters (Institution of Engineering and Technology, 2007), pp. 1040–1042

    Google Scholar 

  61. T. Yang, J. Dong, S. Liao, D. Huang, X. Zhang, Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Opt. Express 21, 8508–8520 (2013)

    Article  ADS  Google Scholar 

  62. V. Ataie, B.P.P. Kuo, E. Myslivets, S. Radic, Generation of 1500-tone, 120 nm-wide ultraflat frequency comb by single CW source, in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013 (Optical Society of America, Anaheim, California, 2013), p. PDP5C.1

    Google Scholar 

  63. Z. Tong, A.O.J. Wiberg, E. Myslivets, B.P.P. Kuo, N. Alic, S. Radic, Spectral linewidth preservation in parametric frequency combs seeded by dual pumps. Opt. Express 20, 17610–17619 (2012)

    Article  ADS  Google Scholar 

  64. K. Harako, D. Seya, T. Hirooka, M. Nakazawa, 640 Gbaud (1.28 Tbit/s/ch) optical Nyquist pulse transmission over 525 km with substantial PMD tolerance. Opt. Express 21, 21062–21075 (2013)

    Article  ADS  Google Scholar 

  65. H. Hu, D. Kong, E. Palushani, J.D. Andersen, A. Rasmussen, B.M. Sørensen, M. Galili, H.C.H. Mulvad, K.J. Larsen, S. Forchhammer, P. Jeppesen, L.K. Oxenløwe, 1.28 Tbaud Nyquist signal transmission using time-domain optical fourier transformation based receiver, in CLEO: 2013 Postdeadline (Optical Society of America, San Jose, California, 2013), p. CTh5D.5

    Google Scholar 

  66. M.A. Soto, M. Alem, M.A. Shoaie, A. Vedadi, C.S. Brès, L. Thévenaz, T. Schneider, Generation of Nyquist Sinc pulses using intensity modulators, in CLEO: 2013 (Optical Society of America, San Jose, California, 2013), p. CM4G.3

    Google Scholar 

Download references

Acknowledgments

Juerg Leuthold acknowledges contributions from the EU-Project FOX-C and support by ETH Zurich, Switzerland. Juerg Leuthold is also very much indebted to Wolfgang Freude from Karlsruhe Institute of Technology (KIT) with whom he collaborated in the past and who contributed a lot to the OFDM section in this chapter. Camille Brès acknowledges support by the EPFL Lausanne, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juerg Leuthold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leuthold, J., Brès, CS. (2015). All-Optical Pulse Shaping for Highest Spectral Efficiency. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_8

Download citation

Publish with us

Policies and ethics