Skip to main content

Effects of Vegetation on Green Roof Ecosystem Services

  • Chapter
  • First Online:
Green Roof Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 223))

Abstract

The ecosystem services green roofs provide are influenced by both the engineered and biotic components of green roof systems. This chapter focuses on how the functioning of green roofs is controlled by plant species and the synthetic vegetation communities created by them. Plant species can differ greatly in their ability to provide services such as roof cooling and stormwater retention. Newer work, emphasizing less-well-characterized benefits such as reduction of heat loss in winter, air pollution mitigation and carbon sequestration (Chap. 2), also shows significant effects of plant species. The species that best perform a particular service differ between services; other research shows performance advantages in combining species or functional groups of plants into communities. Optimizing green roof benefits thus requires close attention to plant properties, and even superficially similar plant groups (e.g. succulents) can show large performance differences among species. Characterizing green roof vegetation by plant traits, such as leaf area, leaf thickness and photosynthetic pathway, could be a useful way to select green roof species, allowing rapid screening of regional floras for potential species. Plant traits are often directly linked to ecosystem processes that provide economically and environmentally valuable services. Consequently a trait-based approach can help elucidate the relationships among the performance of individual species, the role of plant diversity and the ecosystem services provided by green roofs. This should allow the design of purpose-specific green roofs that provide higher levels of ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130(3):449–457

    Article  Google Scholar 

  • Aitkenhead-Peterson JA, Dvorak BD, Volder A, Stanley NC (2011) Chemistry of growth medium and leachate from green roof systems in south-central Texas. Urban Ecosyst 14(1):17–33

    Article  Google Scholar 

  • Alsup S, Ebbs S, Retzlaff W (2010) The exchangeability and leachability of metals from select green roof growth substrates. Urban Ecosyst 13(1):91–111

    Article  Google Scholar 

  • Anderson M, Lambrinos J, Schroll E (2010) The potential value of mosses for stormwater management in urban environments. Urban Ecosyst 13(3):319–332

    Article  Google Scholar 

  • Bass B, Baskaran B (2003) Evaluating rooftop and vertical gardens as an adaptation strategy for urban areas. Institute for Research and Construction, National Research Council, Canada, Ottawa

    Google Scholar 

  • Bassin S, Volk M, Fuhrer J (2007) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Pollut 146(3):678–691

    Article  CAS  PubMed  Google Scholar 

  • Berghage R, Jarrett A, Beattie D, Kelley K, Husain S, Rezai F, Long B, Nagase A, Cameron R, Hunt W (2007) Quantifying evaporation and transpirational water losses from green roofs and green roof media capacity for neutralizing acid rain. National Decentralized Water Resources Capacity Development Project

    Google Scholar 

  • Berndtsson JC, Emilsson T, Bengtsson L (2006) The influence of extensive vegetated roofs on runoff water quality. SciTotal Environ 355(1–3):48–63

    CAS  Google Scholar 

  • Berndtsson JC, Bengtsson L, Jinno K (2009) Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng 35(3):369–380

    Article  Google Scholar 

  • Blanusa T, Vaz Monteiro MM, Fantozzi F, Vysini E, Li Y, Cameron RWF (2013) Alternatives to sedum on green roofs: can broad leaf perennial plants offer better ‘cooling service’? Build Environ 59:99–106

    Article  Google Scholar 

  • Carter T, Keeler A (2008) Life-cycle cost-benefit analysis of extensive vegetated roof systems. J Environ Manage 87(3):350–363. doi:10.1016/j.jenvman.2007.01.024

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8(3):279–284

    Article  CAS  PubMed  Google Scholar 

  • Chapin FS (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Clark MJ, Zheng Y (2013) Plant nutrition requirements for an installed sedum-vegetated green roof module system: effects of fertilizer rate and type on plant growth and leachate nutrient content. HortScience 48(9):1173–1180

    CAS  Google Scholar 

  • Clark C, Adriaens P, Talbot FB (2008) Green roof valuation: a probabilistic economic analysis of environmental benefits. Environ Sci Technol 42(6):2155–2161. doi:10.1021/es0706652

    Article  CAS  PubMed  Google Scholar 

  • Cook-Patton SC, Bauerle TL (2012) Potential benefits of plant diversity on vegetated roofs: a literature review. J Environ Manage 106:85–92

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135(1):109–114

    Article  Google Scholar 

  • Currie BA, Bass B (2008) Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst 11:409–422

    Article  Google Scholar 

  • Del Barrio EP (1998) Analysis of the green roofs cooling potential in buildings. Energy Build 27(2):179–193

    Article  Google Scholar 

  • Dunnett N, Nagase A, Booth R, Grime P (2008a) Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosyst 11(4):385–398

    Article  Google Scholar 

  • Dunnett N, Nagase A, Hallam A (2008b) The dynamics of planted and colonising species on a green roof over six growing seasons 2001–2006: influence of substrate depth. Urban Ecosyst 11(4):373–384

    Article  Google Scholar 

  • Dvorak B, Volder A (2013) Rooftop temperature reduction from unirrigated modular green roofs in south-central Texas. Urban For Urban Green 12(1):28–35

    Article  Google Scholar 

  • Eumorfopoulou E, Aravantinos D (1998) The contribution of a planted roof to the thermal protection of buildings in Greece. Energ Build 27(1):29–36

    Article  Google Scholar 

  • Farrell C, Mitchell RE, Szota C, Rayner JP, Williams NSG (2012a) Green roofs for hot and dry climates: interacting effects of plant water use, succulence and substrate. Ecol Eng 49:270–276

    Article  Google Scholar 

  • Farrell C, Szota C, Rayner JR, Williams NSG (2012b) Hot, high, dry and green?—Research supporting green roof plant selection for arid environments. Paper presented at the Cities Alive: 10th Annual Green Roof and Wall Conference, Chicago, October 17–20, 2012

    Google Scholar 

  • Farrell C, Ang XQ, Rayner JP (2013a) Water-retention additives increase plant available water in green roof substrates. Ecol Eng 52:112–118

    Article  Google Scholar 

  • Farrell C, Szota C, Williams NSG, Arndt SK (2013b) High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant Soil 372:177–193

    Article  CAS  Google Scholar 

  • Fernandez-Cañero R, Emilsson T, Fernandez-Barba C, Herrera Machuca MT (2013) Green roof systems: a study of public attitudes and preferences in southern Spain. J Environ Manage 128:106–115

    Article  PubMed  Google Scholar 

  • Fuller RA, Irvine KN, Devine-Wright P, Warren PH, Gaston KJ (2007) Psychological benefits of greenspace increase with biodiversity. Biol Letters 3(4):390–394

    Article  Google Scholar 

  • Getter KL, Rowe DB (2006) The role of extensive green roofs in sustainable development. HortScience 41(5):1276–1285

    Google Scholar 

  • Getter KL, Rowe DB (2008) Media depth influences sedum green roof establishment. Urban Ecosyst 11:361–372

    Article  Google Scholar 

  • Getter KL, Rowe DB, Andresen JA (2007) Quantifying the effect of slope on extensive green roof stormwater retention. Ecol Eng 31(4):225–231

    Article  Google Scholar 

  • Getter KL, Rowe DB, Robertson GP, Cregg BM, Andresen JA (2009) Carbon sequestration potential of extensive green roofs. Environ Sci Technol 43:7564–7570

    Article  CAS  PubMed  Google Scholar 

  • Getter KL, Rowe DB, Andresen JA, Wichman IS (2011) Seasonal heat flux properties of an extensive green roof in a Midwestern U.S. climate. Energ Build 43(12):3548–3557

    Article  Google Scholar 

  • Hansmann R, Hug S-M, Seeland K (2007) Restoration and stress relief through physical activities in forests and parks. Urban For Urban Green 6:213–225

    Google Scholar 

  • Hartig T, Evans GW, Jamner LD, Davis DS, Gärling T (2003) Tracking restoration in natural and urban field settings. J Environ Psychol 23:109–123

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436

    Article  Google Scholar 

  • Jungels J, Rakow DA, Allred SB, Skelly SM (2013) Attitudes and aesthetic reactions toward green roofs in the Northeastern United States. Landsc Urban Plan 117:13–21

    Article  Google Scholar 

  • Kadas G (2006) Rare invertebrates colonizing green roofs in London. Urban Habitats 4(1):66–86

    Google Scholar 

  • Kaplan R (2001) The nature of the view from home psychological benefits. Environ Behav 33(4):507–542

    Article  Google Scholar 

  • Kendal D, Williams KJH, Williams NSG (2012) Plant traits link people’s plant preferences to the composition of their gardens. Landsc Urban Plan 105(1–2):34–42

    Article  Google Scholar 

  • Lavorel S, Grigulis K, Lamarque P, Colace M, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99(1):135–147

    Article  Google Scholar 

  • Lee KE (2014) The role of green roof views in attention restoration and work performance. PhD Thesis. The University of Melbourne

    Google Scholar 

  • Lee KE, Williams KJH, Sargent LD, Farrell C, Williams NS (2014) Living roof preference is influenced by plant characteristics and diversity. Landsc Urban Plan 122:152–159

    Article  Google Scholar 

  • Lindemann-Matthies P, Junge X, Matthies D (2010) The influence of plant diversity on people’s perception and aesthetic appreciation of grassland vegetation. Biol Conserv 143(1):195–202

    Article  Google Scholar 

  • Liu K, Baskaran B (2005) Thermal performance of extensive green roofs in cold climates. National Research Council (Canada), Construction Technology Update No. 65, NRCC-48202. Ottawa, Ontario

    Google Scholar 

  • Liu T-C, Shyu G-S, Fang W-T, Liu S-Y, Cheng B-Y (2012) Drought tolerance and thermal effect measurements for plants suitable for extensive green roof planting in humid subtropical climates. Energy Build 47:180–188

    Article  Google Scholar 

  • Lundholm J, MacIvor J, MacDougall Z, Ranalli M (2010) Plant species and functional group combinations affect green roof ecosystem functions. PLoS One 5(3):art. no. e9677

    Article  Google Scholar 

  • Lundholm J, Weddle B, MacIvor J (2014a). Snow depth and vegetation type affect green roof thermal performance in winter. Energy Build 84:299–307

    Article  Google Scholar 

  • Lundholm J, Heim A, Tran S, Smith T (2014b). Leaf and life history traits predict plant growth in a green roof ecosystem. PLoS One 9(6):e101395. doi:10.1371/journal.pone.0101395

    Article  PubMed Central  PubMed  Google Scholar 

  • MacIvor JS, Lundholm J (2011) Performance evaluation of native plants suited to extensive green roof conditions in a maritime climate. Ecol Eng 37(3):407–417

    Article  Google Scholar 

  • MacIvor JS, Ranalli MA, Lundholm JT (2011) Performance of dryland and wetland plant species on extensive green roofs. Ann Bot-London 107(4):671–679

    Article  Google Scholar 

  • Mentens J, Raes D, Hermy M (2006) Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc Urban Plan 77(3):217–226

    Article  Google Scholar 

  • Monterusso MA, Rowe DB, Rugh CL, Russell DK (2004) Runoff water quantity and quality from green roof systems. Acta Hortic 639:369–376

    CAS  Google Scholar 

  • Morikawa H, Higaki A, Nohno M, Takahashi M, Kamada M, Nakata M, Toyo-hara G, Okamura Y, Matsui K, Kitani S (1998) More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant Cell Environ 21(2):180–190

    Article  Google Scholar 

  • Nagase A, Dunnett N (2012) Amount of water runoff from different vegetation types on extensive green roofs: effects of plant species, diversity and plant structure. Landsc Urban Plan 104(3–4):356–363

    Article  Google Scholar 

  • Nagase A, Dunnett N (2013) Establishment of an annual meadow on extensive green roofs in the UK. Landsc Urban Plan 112(1):50–62

    Article  Google Scholar 

  • Niachou A, Papakonstantinou K, Santamouris M, Tsangrassoulis A, Mihala-kakou G (2001) Analysis of the green roof thermal properties and investigation of its energy performance. Energ Build 33(7):719–729

    Article  Google Scholar 

  • Oberndorfer E, Lundholm J, Bass B, Coffman RR, Doshi H, Dunnett N, Gaffin S, Kohler M, Liu KKY, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57(10):823–833

    Article  Google Scholar 

  • Orians GH (1986) An ecological and evolutionary approach to landscape aesthetics. In: Penning-Rowsell EC, Lowenthal D (eds) Landscape meanings and values. Allen and Unwin, London, pp 3–25

    Google Scholar 

  • Payne EG, Fletcher TD, Cook PL, Deletic A, Hatt BE (2014) Processes and drivers of nitrogen removal in stormwater biofiltration. Crit Rev Env Sci Technol 44:796–846

    Article  CAS  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, De Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, Ter Steege H, Van Der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61(3):167–234

    Article  Google Scholar 

  • Permpituck S, Namprakai P (2012) The energy consumption performance of roof lawn gardens in Thailand. Renew Energy 40(1):98–103

    Article  Google Scholar 

  • Power SA, Ashmore MR (2002) Responses of fen and fen-meadow communities to ozone. New Phytol 156(3):399–408

    Article  CAS  Google Scholar 

  • Pugh TAM, MacKenzie AR, Whyatt JD, Hewitt CN (2012) Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environ Sci Tech 46(14):7692–7699

    Article  CAS  Google Scholar 

  • Read J, Fletcher TD, Wevill T, Deletic A (2010) Plant traits that enhance pollutant removal from stormwater in biofiltration systems. Int J Phytoremediation 12(1):34–53

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Buschena C, Tjoelker MG, Wrage K, Knops J, Tilman D, Machado JL (2003) Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytol 157(3):617–631

    Article  Google Scholar 

  • Rowe DB (2011) Green roofs as a means of pollution abatement. Environ Pollut 159(8–9):2100–2110

    Article  CAS  PubMed  Google Scholar 

  • Rowe DB, Kolp MR, Greer SE, Getter KL (2014) Comparison of irrigation efficiency and plant health of overhead, drip, and sub-irrigation for extensive green roofs. Ecol Eng 64:306–313

    Article  Google Scholar 

  • Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427–428:347–354

    Article  PubMed  Google Scholar 

  • Sailor DJ (2008) A green roof model for building energy simulation programs. Energy Build 40(8):1466–1478

    Article  Google Scholar 

  • Sailor DJ, Hutchinson D, Bokovoy L (2008) Thermal property measurements for ecoroof soils common in the western U.S. Energy Build 40(7):1246–1251

    Article  Google Scholar 

  • Sailor DJ, Elley TB, Gibson M (2012) Exploring the building energy impacts of green roof design decisions-a modeling study of buildings in four distinct climates. J Build Phys 35(4):372–391

    Article  Google Scholar 

  • Savi T, Andri S, Nardini A (2013) Impact of different green roof layering on plant water status and drought survival. Ecol Eng 57:188–196

    Article  Google Scholar 

  • Seidl M, Gromaire MC, Saad M, De Gouvello B (2013) Effect of substrate depth and rain-event history on the pollutant abatement of green roofs. Environ Poll (Barking, Essex: 1987) 183:195–203

    Article  CAS  Google Scholar 

  • Song U, Kim E, Bang JH, Son DJ, Waldman B, Lee EJ (2013) Wetlands are an effective green roof system. Build Environ 66:141–147

    Google Scholar 

  • Speak AF, Rothwell JJ, Lindley SJ, Smith CL (2012) Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos Environ 61:283–293

    Article  CAS  Google Scholar 

  • Speak AF, Rothwell JJ, Lindley SJ, Smith CL (2013a) Rainwater runoff retention on an aged intensive green roof. SciTotal Environ 461–462:28–38

    Google Scholar 

  • Speak AF, Rothwell JJ, Lindley SJ, Smith CL (2013b) Reduction of the urban cooling effects of an intensive green roof due to vegetation damage. Urban Climate 3:40–55

    Article  Google Scholar 

  • Spolek G (2008) Performance monitoring of three ecoroofs in Portland, Oregon. Urban Ecosyst 11:349–359

    Article  Google Scholar 

  • Spolek G, Sailor D, Ervin D (2008) Optimization of green roof design–preliminary results. In: Proceedings of the 6th Annual Greening Rooftops for Sustainable Communities Conference, Baltimore, MD, April 30-May 2008

    Google Scholar 

  • Sproul J, Wan MP, Mandel BH, Rosenfeld AH (2014) Economic comparison of white, green, and black flat roofs in the United States. Energy Build 71:20–27

    Article  Google Scholar 

  • Stovin V, Poë S, Berretta C (2013) A modelling study of long term green roof retention performance. J Environ Manage 131:206–215

    Article  PubMed  Google Scholar 

  • Sutton R (2014) Aesthetics for green roofs and green walls. J Living Archit 1(2):1–20. http://greenroofs.org/resources/JOLA2014Volume1(Issue2)Sutton

    Google Scholar 

  • Teemusk A, Mander U (2007) Rainwater runoff quantity and quality performance from a greenroof: the effects of short-term events. Ecol Eng 30(3):271–277. doi:10.1016/j.ecoleng.2007.01.009|ISSN0925-8574

    Article  Google Scholar 

  • Theodosiou TG (2003) Summer period analysis of the performance of a planted roof as a passive cooling technique. Energy Build 35(9):909–917

    Article  Google Scholar 

  • van den Berg AE, Koole SL, van der Wulp NY (2003) Environmental preference and restoration: (how) are they related? J Environ Psychol 23(2):135–146

    Article  Google Scholar 

  • Van Mechelen C, Dutoit T, Hermy M (2014) Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landsc Urban Plan 121:81–91

    Article  Google Scholar 

  • Van Renterghem T, Hornikx M, Forssen J, Botteldooren D (2013) The potential of building envelope greening to achieve quietness. Build Environ 61:34–44

    Article  Google Scholar 

  • VanWoert ND, Rowe DB, Andresen JA, Rugh CL, Fernandez RT, Xiao L (2005) Green roof stormwater retention: effects of roof surface, slope, and media depth. J Environ Qual 34(3):1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Vijayaraghavan K, Joshi UM, Balasubramanian R (2012) A field study to evaluate runoff quality from green roofs. Water Res 46(4):1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Villarreal EL, Bengtsson L (2005) Response of a sedum green-roof to individual rain events. Ecol Eng 25(1):1–7. doi:10.1016/j.ecoleng.2004.11.008

    Article  Google Scholar 

  • Volder A, Dvorak B (2014) Event size, substrate water content and vegetation affect storm water retention efficiency of an un-irrigated extensive green roof system in Central Texas. Sustain Cities Soc 10:59–64

    Article  Google Scholar 

  • Voyde E, Fassman E, Simcock R (2010) Hydrology of an extensive living roof under sub-tropical climate conditions. J Hydrol 394:384–395

    Google Scholar 

  • Weber F, Kowarik I, Säumel I (2014) Herbaceous plants as filters: immobilization of particulates along urban street corridors. Environ Pollut 186:234–240

    Article  CAS  PubMed  Google Scholar 

  • White EV, Gatersleben B (2011) Greenery on residential buildings: does it affect preferences and perceptions of beauty? J Environ Psychol 31(1):89–98

    Article  Google Scholar 

  • Wilson SA (1995) Are Mediterranean plant species likely to have a distinctive response to SO2 pollution? Agric Ecosyst Environ 55(2):71–93

    Article  CAS  Google Scholar 

  • Yang J, Yu Q, Gong P (2008) Quantifying air pollution removal by green roofs in Chicago. Atmos Environ 42(31):7266–7273

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This chapter has benefited from discussion with Claire Farrell and Kate Lee. NSGW was partially funded by Australian Research Council grants LP0990704 and LP130100731.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Lundholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lundholm, J., Williams, N. (2015). Effects of Vegetation on Green Roof Ecosystem Services. In: Sutton, R. (eds) Green Roof Ecosystems. Ecological Studies, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-14983-7_9

Download citation

Publish with us

Policies and ethics