Skip to main content
Book cover

Halophiles pp 145–159Cite as

Biosynthesis of Nanoparticles from Halophiles

  • Chapter

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 6))

Abstract

Nanobiotechnology is a multidisciplinary branch of nanotechnology which includes fabrication of nanomaterials using biological approaches. Many bacteria, yeast, fungi, algae and viruses have been used for synthesis of various metallic, metal sulfide, metal oxide and alloy nanoparticles , since the first report on biosynthesis of cadmium sulfide quantum dots by Candida glabrata and Schizosaccharomyces pombe in 1989. These nanofactories offer a better size control through compartmentalization in the periplasmic space and vesicles, and are usually capped by stabilizing cellular metabolites. Halophiles depending on their salt requirements may be classified as slight, moderate and extreme halophiles. They are found in marine and/or hypersaline environments. These organisms are known to encounter metals in their environment as the econiches they inhabit serve as ecological sinks for metals. Metal based nanoparticle synthesis by halophilic organisms is in its infancy and has only been reported in few organisms. This chapter aims to shed light on the various halophilic organisms and their by-products that have been exploited for nanomaterial synthesis, the mechanisms that may be involved in the nanomaterial fabrication and the possible applications of the fabricated nanoparticles. A special section would be dedicated for the bioavailability of metals to halophiles under varying salinity conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baumgartner J, Morin G, Menguy N, Gonzalez TP, Widdrat M, Cosmidis J, Faivr D (2013) Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates. Proc Natl Acad Sci U S A 110:14883–14888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bera D, Qian L, Tseng T-K, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials 3:2260–2345

    Article  CAS  Google Scholar 

  • Byrne RH (2002) Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochem Trans 3:11–16

    Article  PubMed Central  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 45–102

    Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S (1989) Mechanisms of genetic variability in Halobacterium halobium: the purple membrane and gas vesicle mutations. Can J Microbiol 35:65–72

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, Arora P (1997) Genetic analysis of gas vesicle gene cluster in haloarchaea. FEMS Microbiol Lett 153:1–10

    Article  CAS  Google Scholar 

  • DasSarma S, DasSarma P (2012) Halophiles. In: eLs. Wiley, Chichester. doi:10.1002/9780470015902.a0000394.pub3

    Google Scholar 

  • DasSarma S, Damerval T, Jones JG, Tandeau de Marsac N (1987) A plasmid encoded gas vesicle protein gene in a halophilic archaebacterium. Mol Microbiol 1:365–370

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, Arora P, Lin F, Molinari E, Yin LR (1994) Wild-type gas vesicle formation requires at least ten genes in the gvp gene cluster of Halobacterium halobium plasmid pNRC100. J Bacteriol 176:7646–7652

    PubMed Central  CAS  PubMed  Google Scholar 

  • DasSarma S, Karan R, DasSarma P, Barnes S, Ekulona F, Smith B (2013) An improved genetic system for bioengineering buoyant gas vesicle nanoparticles from Haloarchaea. BMC Biotechnol 13:112, http://www.biomedcentral.com/1472-6750/13/112

    Article  PubMed Central  PubMed  Google Scholar 

  • El-Rafie HM, El-Rafie HM, Zahran MK (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym 96:403–410

    Article  CAS  PubMed  Google Scholar 

  • Garcia MA (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Phys D Appl Phys 44:283001

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Coll Surf B Biointerf 74:328–335

    Article  CAS  Google Scholar 

  • Halladay JT, Jones JG, Lin F, MacDonald AB, DasSarma S (1993) The rightward gas vesicle operon in Halobacterium plasmid pNRC100: identification of the gvpA and gvpC gene products by use of antibody probes and genetic analysis of the region downstream of gvpC. J Bacteriol 175:684–692

    PubMed Central  CAS  PubMed  Google Scholar 

  • Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen A, Bro-Rasmussen F (1992) Environmental cadmium in Europe. Rev Environ Contam Toxicol 125:101–118

    CAS  PubMed  Google Scholar 

  • Jones JG, Young DC, DasSarma S (1991) Structure and organization of the gas vesicle gene cluster on the Halobacterium halobium plasmid pNRC100. Gene 102:1017–1022

    Article  Google Scholar 

  • Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem Int Ed 47:5186–5189

    Article  CAS  Google Scholar 

  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Coll Surf B Biointerf 71:133–137

    Article  CAS  Google Scholar 

  • Kathiresan K, Alikunhi NM, Pathmanaban S, Nabikhan A, Kandasamy S (2010) Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger. Can J Microbiol 56:1050–1059

    Article  CAS  PubMed  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Ashtapure S, Kharazzi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Manivannan S, Alikunhi NM, Kandasamy K (2010) In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  • Markich SJ, Brown PL, Batley GE, Apte SC, Stauber JL (2001) Incorporating metal speciation and bioavailability into water quality guidelines for protecting aquatic ecosystems. Aust J Ecotoxicol 7:109–122

    CAS  Google Scholar 

  • Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi H (2011) Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Muthukannan R, Karuppiah B (2011) Rapid synthesis and characterization of silver nanoparticles by novel Pseudomonas sp. “ram bt-1”. J Ecobiotechnol 3:24

    Google Scholar 

  • Myung S, Solanki A, Kim C, Park J, Kim KS, Lee K-B (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23:2221–2225. doi:10.1002/adma.201100014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nürnberg HW (1983) Investigation on heavy metal speciation in natural waters by voltammetric procedures. Fresen Z Anal Chem 316:557–565

    Article  Google Scholar 

  • Oza G, Pandey S, Shah R, Sharon M (2012) A mechanistic approach for biological fabrication of crystalline gold nanoparticles using marine algae, Sargassum wightii. Eur J Exp Biol 2:505–512

    CAS  Google Scholar 

  • Paquin PR, Zoltay V, Winfield RP, Wu KB, Mathew R, Santore RC, Di Toro DM (2002) Extension of the biotic ligand model of acute toxicity to a physiologically-based model of the survival time of rainbow trout (Oncorhynchus mykiss) exposed to silver. Comp Biochem Physiol C Toxicol Pharmacol 133:305–343

    Article  PubMed  Google Scholar 

  • Peakall D, Burger J (2003) Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicol Environ Saf 56:110–121

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met. doi:10.1155/2014/692643, http://dx.doi.org/

    Google Scholar 

  • Rao CNR, Cheetham AK (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11:2887–2894

    Article  CAS  Google Scholar 

  • Raveendran S, Chauhan N, Nakajima Y, Toshiaki H, Kurosu S, Tanizawa Y, Tero R, Yoshida Y, Hanajiri T, Maekawa T, Ajayan PM, Sandhu A, Kumar DS (2013a) Ecofriendly route for the synthesis of highly conductive graphene using extremophiles for green electronics and bioscience. Part Part Syst Charact 30:573–578

    Article  CAS  Google Scholar 

  • Raveendran S, Poulose AC, Yoshida Y, Maekawa T, Kumar DS (2013b) Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym 91:22–32

    Article  CAS  PubMed  Google Scholar 

  • Raveendran S, Dhandayuthapani B, Nagaoka Y, Yoshida Y, Maekawa T, Kumar DS (2013c) Biocompatible nanofibers based on extremophilic bacterial polysaccharide, Mauran from Halomonas maura. Carbohydr Polym 92:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Raveendran S, Girija AR, Balasubramanian S, Ukai T, Yoshida Y, Maekawa T, Kumar DS (2014) Green approach for augmenting biocompatibility to quantum dots by extremophilic polysaccharide conjugation and nontoxic bioimaging. ACS Sustain Chem Eng. doi:10.1021/sc500002g

    Google Scholar 

  • Roux L, Roux S, Appriou P (1998) Behaviour and speciation of metallic species Cu, Cd, Mn and Fe during estuarine mixing. Mar Poll Bull 36:56–64

    Article  Google Scholar 

  • Sanders J, Abbe G (1987) The role of suspended sediments and phytoplankton in the partitioning and transport of silver in estuaries. Cont Shelf Res 7:1357–1361

    Article  Google Scholar 

  • Sathiyanarayanan G, Kiran GS, Selvin J (2013) Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Coll Surf B: Biointerf 102:13–20

    Article  CAS  Google Scholar 

  • Schrofel A, Kratosova G, Bohunicka G, Dobrocka E, Vavra I (2011) Biosynthesis of gold nanoparticles using diatoms—silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216

    Article  CAS  Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 7:1464–1469

    Article  Google Scholar 

  • Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. p R58–8. Bull Mater Sci 35:1201–1205

    Article  CAS  Google Scholar 

  • Shah R, Oza G, Pandey S, Sharon M (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2:485–492

    CAS  Google Scholar 

  • Shukla HD, DasSarma S (2004) Complexity of gas vesicle biogenesis in Halobacterium sp. strain NRC-1: identification of five new proteins. J Bacteriol 186:3182–3186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Coll Surf B: Biointerf 57:97–101

    Article  CAS  Google Scholar 

  • Srivastava P, Braganca J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Braganca J, Ramanan SR, Kowshik M (2014) Green Synthesis of Silver Nanoparticles by Haloarchaeon Halococcus salifodinae BK6. Adv Mater Res 938:236–241

    Article  CAS  Google Scholar 

  • Tipping E, Lofts S, Lawlor AJ (1998) Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Sci Total Environ 210:63–77

    Article  PubMed  Google Scholar 

  • Turner DR (1987) Speciation and cycling of arsenic, cadmium, lead and mercury in natural waters. In: Hutchinson TC, Meema KM (eds) Lead, mercury, cadmium and arsenic in the environment. Wiley, New York, pp 175–186

    Google Scholar 

  • van Keulen G, Hopwood DA, Dijkhuizen L, Sawers RG (2005) Gas vesicles in actinomycetes: old buoys in novel habitats. Trends Microbiol 13:350–354

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenal Kowshik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srivastava, P., Kowshik, M. (2015). Biosynthesis of Nanoparticles from Halophiles. In: Maheshwari, D., Saraf, M. (eds) Halophiles. Sustainable Development and Biodiversity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-14595-2_4

Download citation

Publish with us

Policies and ethics