Skip to main content

Dormancy Induction and Release in Buds and Seeds

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

Dormancy is a complex trait in both buds and seeds, which is an important mechanism for survival during the life cycle of plants. Over the years, a vast wealth of information has been generated on how environmental and developmental signals impact dormancy in buds and seeds. At the molecular level, these studies have identified many factors including light (photoperiod), temperature (cold), hormones, circadian clock, and epigenetic regulation that control dormancy-associated genes regulating induction and release of dormancy in buds and seeds. Due to intrinsic differences between buds and seeds across a multitude of plant species, it should not be surprising that similar and dissimilar signals may control different phases of dormancy. This review focuses on the main similarities in gene expression and molecular mechanisms involved in bud and seed dormancy and release. A model perennial weed, leafy spurge, is presented as an example to compare commonalities in gene expression and molecular mechanisms during bud and seed dormancy and release. The study indicated that the physiological state of dormant imbibed, but growth competent seeds (21d C) are more analogous to paradormant buds than that of ecodormant buds. In addition, common molecular mechanisms associated with dormancy transitions in buds and seeds involved processes associated with abscisic acid- and auxin-signaling and transport, cell cycle, and AP2/ERF transcription factors or their up-stream regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JV, Gesch RW, Jia Y, ChaoWS, Horvath DP (2005) Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28:1567–1578

    Google Scholar 

  • Anderson JV, Horvath DP, Chao WS, Foley ME (2010) Bud dormancy in perennial plants: a mechanism for survival. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments, topics in current genetics, vol 21. Springer-Verlag, Berlin, p 69–89

    Google Scholar 

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    PubMed  Google Scholar 

  • Allen PS, Meyer SE, Beckstead J (1995) Patterns of seed after-ripening in Bromus tectorum L. J Exp Bot 46:1737–1744

    CAS  Google Scholar 

  • Allona I, Ramos A, Ibáñez C, Contreras A, Casado R, Aragoncillo C (2008) Review. Molecular control of winter dormancy establishment in trees. Span J Agric Res 6(Special issue):201–210

    Google Scholar 

  • Barrero JM, Downie AB, Xu Q, Gubler F (2014) A role for barley cryptochrome1 in light regulation of grain dormancy and germination. Plant Cell 26:1094–1104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Benech-Arnold R.L, Sánchez RA, Forcella F, Kruk B, Ghersa CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Res 67:105–122

    Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci U S A 103:17042–17047

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    CAS  PubMed  Google Scholar 

  • Bethke PC, Libourel IGL, Jones RL (2006) Nitric oxide reduces seed dormancy in Arabidopsis. J Exp Bot 57:517–526

    CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the evergrowing peach mutant. J Hered 95:436–444

    CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Bowes CG, Thomas AG (1978) Longevity of leafy spurge seeds in the soil following various control programs. J Range Manage 31:137–140

    Google Scholar 

  • Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ (2007) Gene expression profiling reveals defined functions of the ABC transporter COMATOSE late in phase II of germination. Plant Physiol 143:1669–1679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chao WS, Foley ME, Horvath DP, Anderson JV (2007) Signals regulating dormancy in vegetative buds. Int J Plant Dev Biol 1:49–56

    Google Scholar 

  • Chao WS, Foley ME, Doğramacı M, Anderson JV, Horvath DP (2011) Alternating temperature breaks dormancy in leafy spurge seeds and impacts signaling networks associated with HY5. Funct Integr Genomics 11:637–649

    CAS  PubMed  Google Scholar 

  • Chao WS, Doğramacı M, Horvath DP, Anderson JV, Foley ME (2014) The resemblance and disparity of gene expression in dormant and non-dormant seeds and crown buds of leafy spurge (Euphorbia esula). BMC Plant Biol, in press

    Google Scholar 

  • Chiang GC, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, Flowering locus C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A 106:11661–11666

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728

    CAS  PubMed  Google Scholar 

  • Curaba J, Moritz T, Blervaque R, Parcy F, Raz V, Herzog M, Vachon G (2004) AtGA3ox2, a key gene responsible for bioactive gibberellins biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol 136:3660–3669

    PubMed Central  CAS  PubMed  Google Scholar 

  • Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doğramacı M, Horvath DP, Chao WS, Foley ME, Christoffers MJ, Anderson JV (2010) Low temperatures impact dormancy status, flowering competence, and transcript profiles in crown buds of leafy spurge. Plant Mol Biol 73:207–226

    PubMed  Google Scholar 

  • Doğramacı M, Foley ME, Chao WS, Christoffers MJ, Anderson, JV (2013) Induction of endodormancy in crown buds of leafy spurge (Euphorbia esula L.) implicates a role for ethylene and cross-talk between photoperiod and temperature. Plant Mol Biol 81:577–593

    PubMed  Google Scholar 

  • Dong MA, Farré EM, Thomashow MF (2011) CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:7241–7246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Donohue K, Dorn L, Griffith C, Kim E, Aguilera A, Polisetty CR, Schmitt J (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59:758–770

    PubMed  Google Scholar 

  • Donohue K, Heschel MS, Butler CM, Baura D, Sharrock RA, Whitelam GC, Chiang GC (2008) Diversification of phytochrome contributions to germination as a function of seed-maturation environment. New Phytologist 177:367–379

    PubMed  Google Scholar 

  • Eriksson ME, Moritz T (2002) Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L. x P. tremuloides Michx.). Planta 214:920–930

    CAS  PubMed  Google Scholar 

  • Favier JF (1995) A model for germination rate during dormancy loss in Hordeum vulgare. Ann Bot 76:631–638

    Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    CAS  PubMed  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foley ME, Chao WS (2008) Temperature and moisture status affect afterripening of leafy spurge (Euphorbia esula) seeds. Weed Sci:56:516–522

    CAS  Google Scholar 

  • Foley ME, Anderson JV, Horvath DP (2009) The effects of temperature photoperiod and vernalization on regrowth and flowering competence in Euphorbia esula (Euphorbiaceae) crown buds. Botany 87:986–992

    CAS  Google Scholar 

  • Foley ME, Anderson JV, Chao WS, Horvath DP (2010) Initial changes in the transcriptome of Euphorbia esula seeds induced to germinate with a combination of constant and diurnal alternating temperatures. Plant Mol Biol 73:131–142

    CAS  PubMed  Google Scholar 

  • Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci U S A 108:20236–20241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Footitt S, Huang ZY, Clay HA, Mead A, Finch-Savage WE (2013) Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant J 74:1003–1015

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    CAS  PubMed  Google Scholar 

  • Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 109:3167–3172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartmann U, Hormann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360

    CAS  PubMed  Google Scholar 

  • He Y, Amasino RM (2005) Role of chromatin modification in flowering-time control. Trends Plant Sci 10:30–35

    CAS  PubMed  Google Scholar 

  • Heide OM (2001) Photoperiodic control of dormancy in Sedum telephium and some other herbaceous perennial plants. Physiol Plant 113:332–337

    CAS  PubMed  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    CAS  PubMed  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    CAS  PubMed  Google Scholar 

  • Heschel MS, Butler CM, Barua D, Chiang GCK, Wheeler A, Sharrock RA, Whitelam GC, Donohue K (2008) New roles of phytochromes during seed germination. Int J Plant Sci 169:531–540

    Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    CAS  PubMed  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    CAS  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179

    CAS  PubMed  Google Scholar 

  • Howe GT, Hackett WP, Furnier GR, Klevorn RE (1995) Photoperiodic responses of a northern and southern ecotype of black cottonwood. Physiol Plant 93:695–708

    CAS  Google Scholar 

  • Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH et al (2011). FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108:10756–10761

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ibáñez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol 153:1823–1833

    PubMed Central  PubMed  Google Scholar 

  • Jeknić Z, Chen THH (1999) Changes in protein profiles of poplar tissues during the induction of bud dormancy by short-day photoperiods. Plant Cell Physiol 40:25–35

    Google Scholar 

  • Jordan ET, Hatfield PM, Hondred D, Talon M, Zeevaart JAD, Vierstra RD (1995) Phytochrome-A overexpression in transgenic tobacco-correlation of dwarf phenotype with high-concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol 107:797–805

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406

    CAS  PubMed  Google Scholar 

  • Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell 23:2568–2580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kircher S, Terecskei K, Wolf I, Sipos M, Adam E (2011) Phytochrome A-specific signaling in Arabidopsis thaliana. Plant Signal Behav 6:1714–1719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kozarewa I, Ibanez C, Johansson M, Ogren E, Mozley D, Nylander E, Chono M, Moritz T, Eriksson ME (2010) Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus. Plant Mol Biol 73:143–156

    CAS  PubMed  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kwolek VA, Woolhouse HW (1982) Studies on the dormancy of Calluna vulgaris (L.) hull, during winter: The effect of photoperiod and temperature on the induction of dormancy and the annual cycle of development. Ann Bot 49:367–376

    Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22:371–377

    Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    CAS  PubMed  Google Scholar 

  • Leitch JA, Leistritz FL, Bangsund DA (1996) Economic effect of leafy spurge in the Upper Great Plains: methods, models, and results. Impact Assess 14:419–433

    Google Scholar 

  • Li C, Junttila O, Ernstsen A, Heino P, Palva ET (2003) Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiol Plant 117:206–212

    CAS  Google Scholar 

  • Li C, Viherä-Aarnio A, Puhakainen T, Junttila O, Heino P, Palva ET (2004) Ecotype-dependent control of growth, dormancy and freezing tolerance under seasonal changes in Betula pendula Roth. Trees-Struct Funct 17:127–132

    Google Scholar 

  • Li C, Wu N, Liu S (2005) Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia. Biol Plant 49, 65–71

    Google Scholar 

  • Liu Y, Koornneef M, Soppe WJJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444

    PubMed Central  PubMed  Google Scholar 

  • Li Z, Leighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach (Prunus persica (L.) Batsch) have distinct seasonal and photoperiodic expression patterns. J Exp Biol 60:3521–3530

    CAS  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    CAS  PubMed  Google Scholar 

  • Liu Y, Geyer R, van Zanten M, Carles A, Li Y, Hörold A, van Nocker S, Soppe WJJ (2011) Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy. PLoS ONE 6:e22241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABA dependent growth arrest during germination. Plant J 32:317–328

    CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874

    CAS  PubMed  Google Scholar 

  • Mikami K, Takase H, Tabata T, Iwabuchi M (1989) Multiplicity of the DNA-binding protein HBP-1 specific to the conserved hexameric sequence ACGTCA in various plant gene promoters. FEBS Lett 256:67–70

    CAS  PubMed  Google Scholar 

  • Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    PubMed  Google Scholar 

  • Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe WJJ (2012). The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell 24:2826–2838

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:213–217

    CAS  PubMed  Google Scholar 

  • Nikolaeva MG (2004) On criteria to use in studies of seed evolution. Seed Sci Res 14:315–320

    Google Scholar 

  • Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G (2006) Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis. Plant J 47:124–139

    CAS  PubMed  Google Scholar 

  • Olsen J (2010) Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol 73:37–47

    CAS  PubMed  Google Scholar 

  • Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12:1339–1350

    CAS  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development:Roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

    PubMed Central  CAS  PubMed  Google Scholar 

  • Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21:1722–1732

    PubMed Central  CAS  PubMed  Google Scholar 

  • Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr Biol 15:1998–2006

    CAS  PubMed  Google Scholar 

  • Penfield S, King J (2009) Towards a systems biology approach to understanding seed dormancy and germination. Proc R Soc B Biol Sci 276:3561–3569

    CAS  Google Scholar 

  • Pin PA, Nilsson O (2012) The multi-functional facet of FT in plant development. Plant Cell Environ 35:1742–1755

    CAS  PubMed  Google Scholar 

  • Pokhilko A, Fernandez AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:574

    PubMed Central  PubMed  Google Scholar 

  • Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In: Fenner M. (ed) Seeds: the ecology of regeneration in plant communities. CABI, Wallingford, pp 261–292

    Google Scholar 

  • Puhakainen T, Li C, Boije-Malm M, Kangasjärvi J, Heino P, Palva ET (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol 136:4299–4307

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pukacki P, Giertych M, Chatupka W (1980) Light filtering functions of bud scales in woody plants. Planta 150:132–133

    CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Bradley DJ, Coen ES (1999). Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    CAS  PubMed  Google Scholar 

  • Raz V, Bergervoet JHW, Koornneef M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243–252

    CAS  PubMed  Google Scholar 

  • Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjärvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-β-Glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    CAS  PubMed  Google Scholar 

  • Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W (2002) PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell 14:1885–1901

    PubMed Central  CAS  PubMed  Google Scholar 

  • Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52

    PubMed Central  PubMed  Google Scholar 

  • Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjärvi J (2006) Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J 46:628–640

    CAS  PubMed  Google Scholar 

  • Ruonala R, Rinne PL, Kangasjärvi J, van der Schoot C (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20:59–74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russell L, Larner V, Kurup S, Bougourd S, Holdsworth M (2000) The Arabidopsis COMATOSE locus regulates germination potential. Development 127:3759–3767

    CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Santamaría ME, Hasbún R, Valera MJ, Meijón M, Valledor L, Rodríguez JL, Toorop PE, Cañal MJ, Rodríguez R (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1390

    PubMed  Google Scholar 

  • Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498

    PubMed Central  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011). Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol 157:485–497

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun TP, Koshiba T, Kamiya Y, Yamaguchi S, Nambara E (2006) Regulation of hormone metabolism in Arabidopsis seeds:phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J 48:354–366

    CAS  PubMed  Google Scholar 

  • Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M (2011) The role of nitric oxide in the germination of plant seeds and pollen. Plant Science 181:560–572

    PubMed  Google Scholar 

  • Smithberg MH, Weiser CJ (1968) Patterns of variation among climatic races of red-osier dogwood. Ecology 49:495–505

    Google Scholar 

  • Steadman KJ, Bignell GP, Ellery AJ (2003) Field assessment of thermal after-ripening time for dormancy release prediction in Lolium rigidum seeds. Weed Res 43:458–465

    Google Scholar 

  • Steward FC (1991) Plant physiology 10: a treatise: growth and development, vol 10. Academic Press, Inc., San Diego, California 92101, p 211

    Google Scholar 

  • Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol 73:49–65

    CAS  PubMed  Google Scholar 

  • To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    CAS  PubMed  Google Scholar 

  • Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physio 118:1517–1523

    CAS  Google Scholar 

  • Wake CMF, Fennell A (2000) Morphological, physiological and dormancy responses of three Vitis genotypes to short photoperiod. Physiol Plant 109:203–210

    CAS  Google Scholar 

  • Welling A, Moritz T, Palva ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xi W, Liu C, Hou X, Yu H (2010) MOTHER OF FT AND TFL1 regulates seed germination through a negative feed back loop modulating ABA signaling in Arabidopsis. Plant Cell 22:1733–1748

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Smith MW, Brown RGS, Kamiya Y, Sun TP (1998) Phytochrome regulation and differential expression of gibberellin 3 beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419:308–312

    CAS  PubMed  Google Scholar 

  • Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V (2011) Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta 234:1285–1298

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wun S. Chao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chao, W., Doğramacı, M., Horvath, D., Foley, M., Anderson, J. (2015). Dormancy Induction and Release in Buds and Seeds. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_14

Download citation

Publish with us

Policies and ethics