Skip to main content

Understanding Lone Pair-π Interactions from Electrostatic Viewpoint

  • Chapter
  • First Online:
Noncovalent Forces

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 19))

Abstract

Over the last two decades, studies on lone pair-π interaction have attracted lot of attention of experimental as well as theoretical chemists due to its intriguing nature and its suspected presence in biological systems. The present Chapter begins with a brief overview of the earlier theoretical and experimental work done in this area. This is followed by exploration of the nuances of bonding in lone pair-π interaction, employing the tool of molecular electrostatic potential (MESP) since such weak interactions are mainly dominated by electrostatic features of host and guest molecules. The critical points associated with the scalar field of MESP are exploited for scrutinizing the directionality and bonding sites involved in the lone pair-π complexes. Furthermore, the electrostatic potential for intermolecular complexation (EPIC) model developed by Gadre et al., has been employed for finding out the electrostatically optimized structures and interaction energies of these complexes. The outcomes of EPIC model are compared with the results obtained from quantum chemical calculations of the complexes employing M06L/6-311++G(d,p) level of theory. The present study details out four different cases of lone pair-π complexes, which are currently in vogue. Hexafluorobenzene, one of the most explored π-deficient host in the present context, is initially taken up to demonstrate various facets of MESP for gaining insights into this interaction. This is followed by the scrutiny of special classes of recently synthesized highly π-deficient molecules, viz. tetraoxacalix [2]arene[2]triazine and naphthalenediimide, which are known to have specificity and large affinity, respectively, towards the electron rich species. The chapter ends with the description of lone pair-π interaction in the case of urate oxidase, an enzyme present in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Némethy G, Scheraga HA (1962) J Chem Phys 36:3382–3400

    Google Scholar 

  2. Tzalis D, Tor Y (1996) Tetrahedron Lett 37:8293 – 8296

    Google Scholar 

  3. Müller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–168

    Google Scholar 

  4. Duncan R, Kopeček J (1984) Soluble synthetic polymers as potential drug carriers. In: Polymers in medicine, vol. 57.Springer, Berlin

    Google Scholar 

  5. Huck WTS, Prins LJ, Fokkens RH, Nibbering NMM, van Veggel FCJM, Reinhoudt DN (1998) J Am Chem Soc 120:6240–6246

    Google Scholar 

  6. Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA (1998) Proc Nat Acad Sci USA 95:12088–12093

    Google Scholar 

  7. Mecozzi S, West AP, Dougherty DA (1996) J Am Chem Soc 118:2307–2308

    Google Scholar 

  8. McCurdy A, Jimenez L, Stauffer DA, Dougherty DA (1992) J Am Chem Soc 114:10314–10321

    Google Scholar 

  9. Wheeler SE, Houk KN (2009) J Am Chem Soc 131:3126–3127

    Google Scholar 

  10. Sayyed FB, Suresh CH (2012) J Phys Chem A 116:5723–5732

    Google Scholar 

  11. Sayyed FB, Suresh CH (2012) Chem Phys Lett 523:11–14

    Google Scholar 

  12. Sayyed FB, Suresh CH (2011) J Phys Chem A 115:9300–9307

    Google Scholar 

  13. Mahadevi AS, Sastry GN (2013) Chem Rev 113:2100–2138

    Google Scholar 

  14. Egli M, Sarkhel S (2007)Acc Chem Res 40:197–205

    Google Scholar 

  15. Caltagirone C, Gale PA (2009) Chem Soc Rev 38:520–563

    Google Scholar 

  16. Wenzel M, Hiscock JR, Gale PA (2012) Chem Soc Rev 41:480–520

    Google Scholar 

  17. Gale PA, Busschaert N, Haynes CJE, Karagiannidis LE, Kirby IL (2014) Chem Soc Rev 43:205–241

    Google Scholar 

  18. Schottel BL, Chifotides HT, Dunbar KR (2008) Chem Soc Rev 37:68–83

    Google Scholar 

  19. Chifotides HT, Dunbar KR (2013) Acc Chem Res 46:894–906

    Google Scholar 

  20. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011) Angew Chem Int Ed 50:9564–9583

    Google Scholar 

  21. Mooibroek TJ, Black CA, Gamez P, Reedijk J (2008) Cryst Growth Des 8:1082–1093

    Google Scholar 

  22. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Angew Chem Int Ed 41:3389–3392

    Google Scholar 

  23. Boden N, Davis P, Stam C, Wesselink G (1973) Mol Phys 25:81–86

    Google Scholar 

  24. Vrbancich J, Ritchie GLD (1980) J Chem Soc Faraday Trans 2 76:648–659

    Google Scholar 

  25. Schneider H-J, Werner F, Blatter T (1993) J Phys Org Chem 6:590–594

    Google Scholar 

  26. Schneider H-J, Blatter T, Palm B, Pfingstag U, Ruediger V, Theis I (1992) J Am Chem Soc 114:7704–7708

    Google Scholar 

  27. Schneider H-J (1991) Angew Chem Int Ed 30:1417–1436

    Google Scholar 

  28. Alkorta I, Rozas I, Elguero J (1997) J Org Chem 62:4687–4691

    Google Scholar 

  29. Alkorta I, Rozas I, Elguero J (2002) J Am Chem Soc 124:8593–8598

    Google Scholar 

  30. Gallivan JP, Dougherty DA (1999) Org Lett 1:103–106

    Google Scholar 

  31. Alkorta I, Elguero J (2003) J Phys Chem A 107:9428–9433

    Google Scholar 

  32. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2003) Chem Phys Chem 4:1344–1348

    Google Scholar 

  33. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Chem Asian J 6:2316–2318

    Google Scholar 

  34. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Angew Chem Int Ed 50:415–418

    Google Scholar 

  35. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887–1930

    Google Scholar 

  36. Lao KU, Herbert JM (2014) J Chem Phys 140:044108–8

    Google Scholar 

  37. Kim D, Tarakeshwar P, Kim KS (2004) J Phys Chem A 108:1250–1258

    Google Scholar 

  38. Demeshko S, Decher S, Meyer F (2004) J Am Chem Soc 126:4508–4509

    Google Scholar 

  39. de Hoog P, Gamez P, Mutikainen I, Turpeinen U, Reedijk J (2004) Angew Chem Int Ed 43:5815–5817

    Google Scholar 

  40. Frohn H, Giesen M, Welting D, Henkel G (1996) Eur J Solid State Inorg Chem 33:841–853

    Google Scholar 

  41. Sessler JL, Gale PA, Cho W-S (2006) Anion receptor chemistry, vol 8. Royal Society of Chemistry

    Google Scholar 

  42. Rosokha YS, Lindeman SV, Rosokha SV, Kochi JK (2004) Angew Chem Int Ed 43:4650–4652

    Google Scholar 

  43. Müller M, Albrecht M, Gossen V, Peters T, Hoffmann A, Raabe G, Valkonen A, Rissanen K (2010) Chem Eur J 16:12446–12453

    Google Scholar 

  44. Li S, Wang D-X, Wang M-X (2012) Tetrahedron Lett 53:6226–6229

    Google Scholar 

  45. Arranz-Mascarós P, Bazzicalupi C, Bianchi A, Giorgi C, Godino-Salido M-L, Gutiérrez-Valero M-D, Lopez-Garzón R, Savastano M (2013) J Am Chem S 135:102–105

    Google Scholar 

  46. Giese M, Albrecht M, Krappitz T, Peters M, Gossen V, Raabe G, Valkonen A, Rissanen K (2012) Chem Commun 48:9983–9985

    Google Scholar 

  47. Ballester P (2013) Acc Chem Res 46:874–884

    Google Scholar 

  48. Gil-Ramírez G, Escudero-Adán EC, Benet-Buchholz  J, Ballester  P (2008) Angew Chem 120:4182–4186

    Google Scholar 

  49. Schottel BL, Chifotides HT, Shatruk M, Chouai A, Pérez LM, Bacsa J, Dunbar KR (2006) J Am Chem Soc 128:5895–5912

    Google Scholar 

  50. Mareda J, Matile S (2009) Chem Eur J 15:28–37

    Google Scholar 

  51. Zhao Y, Domoto Y, Orentas E, Beuchat C, Emery D, Mareda J, Sakai N, Matile S (2013) Angew Chem Int Ed 52:9940–9943

    Google Scholar 

  52. Gorteau V, Julliard MD, Matile S (2008) J Membr Sci 321:37–42

    Google Scholar 

  53. Vargas Jentzsch A, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S (2011) Angew Chem Int Ed 50:11675–11678

    Google Scholar 

  54. Lin N-T, Vargas Jentzsch A, Guenee L, Neudorfl J-M, Aziz S, Berkessel A, Orentas E, Sakai N, Matile S (2012) Chem Sci 3:1121–112

    Google Scholar 

  55. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Google Scholar 

  56. Scrocco E, Tomasi J (1973) The electrostatic molecular potential as a tool for the interpretation of molecular properties. In New concepts II, vol 42. Springer, Berlin, pp 95–170

    Google Scholar 

  57. Tomasi J, Mennucci B, Cammy M (1996) Molecular electrostatic potentials: concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  58. Tomasi J, Mennucci B, Cammi R (1996) Theor Comp Chem 3:1–103

    Google Scholar 

  59. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Google Scholar 

  60. Yeole SD, Gadre SR (2011) J Phys Chem A 115:12769–12779

    Google Scholar 

  61. Balanarayan P, Kavathekar R, Gadre SR (2007) J Phys Chem A 111:2733–2738

    Google Scholar 

  62. Gadre SR, Shirsat RN (2000) Electrostatics of atoms and molecules. Universities Press, Hyderabad

    Google Scholar 

  63. Gadre SR, Kulkarni SA, Shrivastava IH (1992) J Chem Phys 96:5253–5260

    Google Scholar 

  64. Balanarayan P, Gadre SR (2003) J Chem Phys 119:5037–5043

    Google Scholar 

  65. Shirsat RN, Bapat SV, Gadre SR (1992) Chem Phys Lett 200:373–378

    Google Scholar 

  66. Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85:676–684

    Google Scholar 

  67. Politzer P, Landry SJ, Waernheim T (1982) J Phys Chem 86:4767–4771

    Google Scholar 

  68. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292

    Google Scholar 

  69. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052

    Google Scholar 

  70. Shields ZP, Murray JS, Politzer P (2010) Int J Quantum Chem 110:2823–2832

    Google Scholar 

  71. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Google Scholar 

  72. Suresh CH, Koga N, Gadre SR (2000) Organometallics 19:3008–3015

    Google Scholar 

  73. Elango M, Subramanian V, Rahalkar AP, Gadre SR, Sathyamurthy N (2008) J Phys Chem A 112:7699–7704

    Google Scholar 

  74. Kumar A, Gadre SR, Mohan N, Suresh CH (2014) J Phys Chem A 118:526–532

    Google Scholar 

  75. Mohan N, Suresh CH, Kumar A, Gadre SR (2013) Phys Chem Chem Phys 15:18401–18409

    Google Scholar 

  76. Suresh CH, Gadre SR (2007) J Phys Chem A 111:710–714

    Google Scholar 

  77. Suresh CH, Alexander P, Vijayalakshmi KP, Sajith P, Gadre SR (2008) Phys Chem Chem Phys 10:6492–6499

    Google Scholar 

  78. Pullman B (1990) Int J Quantum Chem 38:81–92

    Google Scholar 

  79. Pichon-Pesme V, Lecomte C (1998) Acta Crystallogr Sect B 54:485–493

    Google Scholar 

  80. Benabicha F, Pichon-Pesme V, Jelsch C, Lecomte C, Khmou A (2000) Acta Crystallogr Sect B 56:155–165

    Google Scholar 

  81. Bouhmaida N, Ghermani N-E, Lecomte C, Thalal A (1997) Acta Crystallogr Sect A 53:556–563

    Google Scholar 

  82. Bouhmaida N, Thalal A, Ghermani Ne, Lecomte C (1999) Acta Crystallogr Sect A 55:729–738

    Google Scholar 

  83. Gadre SR, Shrivastava IH (1991) J Chem Phys 94:4384–4390

    Google Scholar 

  84. Gadre SR, Pathak RK (1990) Proc Ind Acad Sci (Chem Sci) 102:189–192

    Google Scholar 

  85. Gadre SR, Pundlik SS (1997) J Phys Chem B 101:3298–3303

    Google Scholar 

  86. Pundlik SS, Gadre SR (1997) J Phys Chem B 101:9657–9662

    Google Scholar 

  87. Pingale SS, Gadre SR, Bartolotti LJ (1998) J Phys Chem A 102:9987–9992

    Google Scholar 

  88. Sivanesan D, Babu K, Gadre SR, Subramanian V, Ramasami T (2000) J Phys Chem A 104:10887–10894

    Google Scholar 

  89. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118

    Google Scholar 

  90. Frisch MJ et al (2009) Gaussian09 Revision D.01. Gaussian Inc. Wallingford

    Google Scholar 

  91. Boys S, Bernardi F (1970) Mol Phys 19:553–566

    Google Scholar 

  92. Gadre SR, Kulkarni SA, Suresh C, Shrivastava IH (1995) Chem Phys Lett 239:273–281

    Google Scholar 

  93. Yeole SD, López R, Gadre SR (2012) J Chem Phys 137:074116–074117

    Google Scholar 

  94. Rico JF, López R, Ramírez G, Ema I, Ludeñ EV (2004) J Comput Chem 25:1355–1363

    Google Scholar 

  95. Yeole SD, Gadre SR (2011) J Chem Phys 134:084111–084118

    Google Scholar 

  96. Wang D-X, Wang M-X (2013) J Am Chem Soc 135:892–897

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Dr. C. H. Suresh and Dr. P. Balanarayan for fruitful discussions. Anmol Kumar thanks the Council of Scientific and Industrial Research (CSIR) for research fellowship. Professor Shridhar Gadre is grateful to the Department of Science and Technology (DST), New Delhi for the award of J. C. Bose National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shridhar R. Gadre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gadre, S., Kumar, A. (2015). Understanding Lone Pair-π Interactions from Electrostatic Viewpoint. In: Scheiner, S. (eds) Noncovalent Forces. Challenges and Advances in Computational Chemistry and Physics, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-14163-3_13

Download citation

Publish with us

Policies and ethics