Skip to main content

Modeling and Analysis of the Ericksen-Leslie Equations for Nematic Liquid Crystal Flows

  • Reference work entry
  • First Online:
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids

Abstract

This survey article discusses various aspects of modeling and analysis of the Ericksen-Leslie equations describing nematic liquid crystal flow both in the isothermal and non-isothermal situation. Of special interest is the development of thermodynamically consistent Ericksen-Leslie models in the general situation based on the entropy principle. The full analytical understanding of the dynamics of the underlying system is then based on this principle and gives rise to a rather complete understanding of the dynamics of this system. Furthermore, well-posedness and long-time behavior results in the weak and strong sense are described for the general Ericksen-Leslie system and various simplifications, ranging from the simplified and penalized model, with or without stretching terms, to the case of general Leslie stress both for incompressible and compressible fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Atkin, T. Sluchin, I.W. Stewart, Reflections on the life and work of Frank Matthews Leslie. J. Non-Newtonian. Fluid Mech. 119, 7–23 (2004)

    Article  Google Scholar 

  2. J. Ball, A. Zarnescu, Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202, 493–535 (2011)

    Article  MathSciNet  Google Scholar 

  3. P. Biscari, A. DiCarlo, S. Turzi, Liquid relaxation: a new Parodi-like relation for nematic liquid crystals. arXiv:1509.09022v1

    Google Scholar 

  4. D. Bothe, J. Prüss, Lp-theory for a class of non-Newtonian fluids. SIAM J. Math. Anal. 39, 379–421 (2007)

    Article  MathSciNet  Google Scholar 

  5. L. Cafarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  Google Scholar 

  6. C. Cavaterra, E. Rocca, H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows. J. Differ. Equ. 255, 24–57 (2013)

    Article  MathSciNet  Google Scholar 

  7. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  8. K. Chang, W, Ding, R. Ye, Finite time blow up of th heat flow of harmonic maps from surfaces. J. Differ. Geom. 36, 507–515 (1992)

    Article  MathSciNet  Google Scholar 

  9. D. Coutand, S. Shkoller, Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals. C. R. Acad. Sci. Paris Sér. I Math. 333, 919–924 (2001)

    Article  MathSciNet  Google Scholar 

  10. M. Dai, M. Schonbek, Asymptotic behaviour of solutions to the liquid crystal system in \(H^{m}(\mathbb{R}^{3})\). SIAM J. Math. Anal. 46, 3131–3150 (2014)

    Article  MathSciNet  Google Scholar 

  11. F. De Anna, On the dynamics of some complex fluids, Ph.D. Thesis, Université de Bordeaux, 2016

    Google Scholar 

  12. P.G. DeGennes, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1974)

    Google Scholar 

  13. P.G. DeGennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995)

    Google Scholar 

  14. R. Denk, M. Hieber, J. Prüss, \(\mathbb{R}\)-boundedness, Fourier multipliersand problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166 (2003)

    Google Scholar 

  15. , M. Doi, S. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986)

    Google Scholar 

  16. J.L. Ericksen, Conservation laws fro liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    Google Scholar 

  17. J.L. Ericksen, Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  18. J.L. Ericksen, D. Kinderlehrer (eds.), Theory and Applications of Liquid Crystals. The IMA Volumes in Mathematics and its Applications, vol. 5 (Springer, New York, 1987)

    MATH  Google Scholar 

  19. J. Fan, J. Li, Regularity criteria for the strong solution to the Ericksen-Leslie system in \(\mathbb{R}^{3}\). J. Math. Anal. Appl. 125, 695–703 (2015)

    Article  MathSciNet  Google Scholar 

  20. E. Feireisl, E. Rocca, G. Schimperna, On a non-isothermal model for nematic liquid crystals. Nonlinearity 24, 243–257 (2011)

    Article  MathSciNet  Google Scholar 

  21. E. Feireisl, M. Frémond, E. Rocca, G. Schimperna, A new approach to non-isothermal models for nematic liquid crystals. Arch. Ration. Mech. Anal. 205, 651–672 (2012)

    Article  MathSciNet  Google Scholar 

  22. E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, Evolution of non-isothermal Landau-de Gemmes nematic liquid crystal flows with singular potential. arXiv:1207.1643

    Google Scholar 

  23. E. Feireisl, E. Rocca, G. Schimperna, A. Zarnescu, Nonisothermal nematic liquid crystal flows with Ball-Majumdar free energy. arXiv:1310.8474

    Google Scholar 

  24. F.C. Frank, On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958)

    Article  Google Scholar 

  25. J. Gao, Q. Tao, Z. Yao, Aysmptotic beaviour of solution to the incompressible nematic liquid crystal flow in \(\mathbb{R}^{3}\). arXiv:1412.0498v2

    Google Scholar 

  26. G. Gray, Molecular Structure and Properties of Liquid Crystals (Academic Press, London/New York, 1962)

    Google Scholar 

  27. J. Han, Y. Lou, W. Wang, P. Zhang, Z. Zhang, From microscopic theory to macroscopic theory: a systematic study on modeling of liquid crystals. Arch. Ration. Mech. Anal. 215, 741–809 (2015)

    Article  MathSciNet  Google Scholar 

  28. R. Hardt, D. Kinderlehrer, F. Lin, Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105, 547–570 (1986)

    Article  MathSciNet  Google Scholar 

  29. M. Hieber, M. Nesensohn, J. Prüss, K. Schade, Dynamics of nematic liquid crystals: the quasilinear approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 397–408 (2016)

    Article  MathSciNet  Google Scholar 

  30. M. Hieber, J. Prüss, Thermodynamic Consistent Modeling and Analysis of Nematic Liquid Crystal Flows. Springer Proceedings in Mathematics & Statistics (2016, to appear)

    Chapter  Google Scholar 

  31. M. Hieber, J. Prüss, Dynamics of nematic liquid crystal flows I: general isotropic incompressible fluids. Math. Annalen, in press

    Google Scholar 

  32. M. Hieber, J. Prüss, Dynamics of nematic liquid crystal flows II: general isotropic compressible fluids. Submitted

    Google Scholar 

  33. M. Hieber, J. Saal, The Stokes equation in the Lp-setting: well-posedness and regularity properties, in Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, ed. by Y. Giga, A. Novotny (Springer, Switzerland)

    Google Scholar 

  34. Y. Hinemann, A survey of results and open problems for the hydrodynamic flow of nematic liquid crystals. Elect. J. Differ. Equ. Conf. 21, 149–172 (2014)

    MathSciNet  Google Scholar 

  35. Y. Hinemann, C.Y. Wang, Well-posedness of nematic liquid crystal flow in \(L_{uloc}^{3}(\mathbb{R}^{3})\). Arch. Ration. Mech. Anal. 210, 177–218 (2013)

    Article  MathSciNet  Google Scholar 

  36. M. Hong, J. Li, Z. Xin, Blow-up criteria of strong solutions to the Ericksen-Leslie system in \(\mathbb{R}^{3}\). Commun. Partial Differ. Equ. 39, 1284–1328 (2014)

    Article  MathSciNet  Google Scholar 

  37. X. Hu, D. Wang, Global solutions to the three-dimensional incompressible flow of liquid crystals. Commun. Math. Phys. 296, 861–880 (2010)

    Article  MathSciNet  Google Scholar 

  38. X. Hu, H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals. SIAM J. Math. Anal. 45, 2678–2699 (2013)

    Article  MathSciNet  Google Scholar 

  39. T. Huang, F. Lin, C. Liu, C. Wang, Finite time singularities of the nematic liquid crystal flow in dimension three. arXiv:1504.01080v1

    Google Scholar 

  40. J. Huang, F. Lin, C. Wang, Regularity and existence of global solutions to the Ericksen-Leslie system in \(\mathbb{R}^{2}\). Commun. Math. Phys. 331, 805–850 (2014)

    Article  MathSciNet  Google Scholar 

  41. T. Huang, C. Wang, Blow up criterion for nematic liquid crystal flow. Commun. Partial Differ. Equ. 37, 875–884 (2012)

    Article  MathSciNet  Google Scholar 

  42. T. Huang, C. Wang, H. Wen, Strong solutions for compressible nematic liquid crystal flow. J. Differ. Equ. 252, 2222–2265 (2012)

    Article  MathSciNet  Google Scholar 

  43. T. Huang, C. Wang, H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch. Ration. Mech. Anal. 204, 285–311 (2012)

    Article  MathSciNet  Google Scholar 

  44. F. Jiang, J. Song, D. Wang, On multidimensional compressible flows for nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265, 1711–1756 (2013)

    Article  Google Scholar 

  45. M. Köhne, J. Prüss, M. Wilke, On quasilinear parabolic evolution equations in L p -spaces. J. Evol. Equ. 10, 443–463 (2010)

    Article  MathSciNet  Google Scholar 

  46. J. LeCrone, J. Prüss, M. Wilke, On quasilinear parabolic evolution equations in weighted Lp-spaces II. J. Evol. Equ. 14, 509–533 (2014)

    Article  MathSciNet  Google Scholar 

  47. O. Lehmann, Über fliessende Krystalle. Z. Physik. Chemie 4, 462–472 (1889)

    Google Scholar 

  48. F.M. Leslie, Some constitutive equations for anisotropic fluids. Quart. J. Mech. Appl. Math. 19, 357–370 (1966)

    Article  MathSciNet  Google Scholar 

  49. F.M. Leslie, Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  Google Scholar 

  50. J. Li, Global strong solutions to inhomogeneous incompressible nematic liquid crystal flow. Methods Appl. Anal. 22, 201–220 (2015)

    MathSciNet  MATH  Google Scholar 

  51. J. Li, Z. Xu, J. Zhang, Global well-posedness with large oscillations and vacuum to the three dimensional equations of compressible liquid crystal flows. arXiv:1204:4966v1

    Google Scholar 

  52. X. Li, D. Wang, Global solution to the incompressible flow of liquid crystals. J. Differ. Equ. 252, 745–767 (2012)

    Article  MathSciNet  Google Scholar 

  53. X. Li, D. Wang, Global strong solution to the density dependent incompressible flow of liquid crystals. Trans. Am. Math. Soc. 367, 2301–2338 (2015)

    Article  MathSciNet  Google Scholar 

  54. F. Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MathSciNet  Google Scholar 

  55. F. Lin, On nematic liquid crystals with variable degree of freedom. Commun. Pure Appl. Math. 44, 453–468 (1991)

    Article  Google Scholar 

  56. F. Lin, Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. 149, 785–829 (1999)

    Article  MathSciNet  Google Scholar 

  57. F. Lin, Ch. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  Google Scholar 

  58. F. Lin, Ch. Liu, Partial regularities of the nonlinear dissipative system modeling the flow of liquid crystals. Discret. Contin. Dyn. Syst. 2, 1–22 (1996)

    Google Scholar 

  59. F. Lin, Ch. Liu, Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

    Article  MathSciNet  Google Scholar 

  60. F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)

    Article  MathSciNet  Google Scholar 

  61. F. Lin, C. Wang, Harmonic and quasi-harmonic spheres. Commun. Anal. Geom. 7, 3970–429 (1999)

    Article  MathSciNet  Google Scholar 

  62. F. Lin, C. Wang, The Analysis of Harmonic Maps and Their Heat Flows (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  63. F. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three. arXiv:1408.4146v1

    Google Scholar 

  64. F. Lin, C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lon. Ser. A, Math. Phys. Eng. Sci 372, 20130361 (2014)

    Article  MathSciNet  Google Scholar 

  65. H. Liu, H. Zhang, P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential. Commun. Math. Sci. 3, 201–218 (2005)

    Article  MathSciNet  Google Scholar 

  66. W. Ma, H. Gong, J. Li, Global strong solutions to incompressible Ericksen-Leslie system in \(\mathbb{R}^{3}\). Nonlinear Anal. 109, 230–235 (2014)

    Article  MathSciNet  Google Scholar 

  67. A. Majumdar, A. Zarnescu, Landau de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196, 227–280 (2010)

    Article  MathSciNet  Google Scholar 

  68. W. Maier, A. Saupe, Eine einfache molekulare Theorie des nematischen kristallflüsigen Zustandes. Z. Naturf. A 13, 564–566 (1958)

    Google Scholar 

  69. I. Müller, Thermodynamics. Interaction of Mechanics and Mathematics (Pitman, Boston, 1985)

    MATH  Google Scholar 

  70. Nobelprize.org, The Nobel Prize in 1991. www.nobelprize.org/nobel-prizes/physics/laureats/1991/

  71. L. Onsager, The effects of shape on the interaction of colloidal particles. Ann. N.Y. Acad. Sci. 51, 627–659 (1949)

    Article  Google Scholar 

  72. C.W. Oseen, The theory of liquid crystals. Trans. Faraday Soc. 29, 883–899 (1933)

    Article  Google Scholar 

  73. O. Parodi, Stress tensor for a nematic liquid crystal. J. Phys. 31, 581–584 (1970)

    Article  Google Scholar 

  74. J. Prüss, Maximal regularity for evolution equations in L p -spaces. Conf. Semin. Mat. Univ. Bari 285, 1–39 (2002, 2003)

    Google Scholar 

  75. J. Prüss, G. Simonett, Maximal regularity for evolution equations in weighted L p -spaces. Arch. Math. (Basel) 82, 415–431 (2004)

    Article  MathSciNet  Google Scholar 

  76. J. Prüss, G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations. Monographs in Mathematics Birkhäuser, 2016

    Book  Google Scholar 

  77. J. Prüss, G. Simonett, R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246, 3902–3931 (2009)

    Article  MathSciNet  Google Scholar 

  78. K. Schade, Y. Shibata, On strong dynamics of compressible nematic liquid crystals. SIAM J. Math. Anal. 47, 3963–3992 (2015)

    Article  MathSciNet  Google Scholar 

  79. B. Seguin, E. Fried, Statistical foundations of liquid crystal theory. I. Discrete systems of rod-like molecules. Arch. Ration. Mech. Anal. 206, 1039–1072 (2012)

    Article  Google Scholar 

  80. B. Seguin, E. Fried, Statistical foundations of liquid crystal theory. II. Macroscopic balance laws. Arch. Ration. Mech. Anal. 207, 1–37 (2013)

    MATH  Google Scholar 

  81. I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals. The Liquid Crystal Book Series (Taylor and Francis, London/New York, 2004)

    Google Scholar 

  82. H. Sun, Ch. Liu, On energetic variational approaches in modeling the nematic liquid crystal flows. Discret Cont. Dyn. Syst. 23, 455–475 (2009)

    Article  MathSciNet  Google Scholar 

  83. E.G. Virga, Variational Theories for Liquid Crystals (Chapman-Hall, London, 1994)

    Book  Google Scholar 

  84. H. Wu, X. Xu, Ch. Liu, On the general Ericksen-Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208, 59–107 (2013)

    Article  MathSciNet  Google Scholar 

  85. C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19 (2011)

    Article  MathSciNet  Google Scholar 

  86. W. Wang, P. Zhang, Z. Zhang, Well-posedness of the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 210, 837–855 (2013)

    Article  MathSciNet  Google Scholar 

  87. W. Wang, P. Zhang, Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation. Commun. Pure Appl. Math. 68, 1326–1398 (2015)

    Article  MathSciNet  Google Scholar 

  88. W. Wang, P. Zhang, Z. Zhang, Rigorous derivation from Landau-De Gennes theory to Ericksen-Leslie theory. SIAM J. Math. Anal. 47, 127–158 (2015)

    Article  MathSciNet  Google Scholar 

  89. H. Wu, Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26, 379–396 (2010)

    Article  MathSciNet  Google Scholar 

  90. H. Zocher, The effect of a magnetic field on the nematic state. Trans. Faraday Soc. 29, 945–957 (1933)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Hieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hieber, M., Prüss, J. (2018). Modeling and Analysis of the Ericksen-Leslie Equations for Nematic Liquid Crystal Flows. In: Giga, Y., Novotný, A. (eds) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-13344-7_26

Download citation

Publish with us

Policies and ethics