Skip to main content

A Fast Greedy Algorithm for the Critical Node Detection Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8881))

Abstract

The critical node detection problem (CNDP) aims to fragment a graph \(G=(V,E)\) by removing a set of vertices \(R\) with cardinality \(|R|\le K\) such that the residual graph has minimum pairwise connectivity. Algorithms that are capable of finding \(R\) in graphs with many thousands or millions of vertices are needed since existing approaches require significant computational cost and subsequently are useful for only very small network instances. An efficient method for evaluating the impact of removing any \(v \in V\) on the CNDP objective function within reasonable time and space complexity is then necessary. In this paper we propose a depth-first search solution to this problem that requires \(\mathcal {O}(|V|+|E|)\) complexity, and employ the method in a greedy algorithm for quickly identifying \(R\) in large networks. We evaluate the results using six real-world benchmark problems. The proposed algorithm can be easily extended to vertex and edge-weighted variants of the critical vertex detection problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Identifying critical nodes in undirected graphs: Complexity results and polynomial algorithms for the case of bounded treewidth. Discrete Appl. Math. 161(16–17), 2349–2360 (2013)

    Google Scholar 

  2. Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 43–52. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  4. Boginski, V., Commander, C.: Identifying critical nodes in protein-protein interaction networks. In: Clustering Challenges in Biological, Networks, pp. 153–166 (2009)

    Google Scholar 

  5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  6. Chen, P., David, M., Kempe, D.: Better vaccination strategies for better people. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 179–188. ACM (2010)

    Google Scholar 

  7. Di Summa, M., Grosso, A., Locatelli, M.: Branch and cut algorithms for detecting critical nodes in undirected graphs. Comput. Optim. Appl. 53, 649–680 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Di Summa, M., Grosso, A., Locatelli, M.: Complexity of the critical node problem over trees. Comput. Oper. Res. 38(12), 1766–1774 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: Hardness and approximation. IEEE/ACM Trans. Networking 20(2), 609–619 (2012)

    Article  Google Scholar 

  10. Dinh, T.N., Thai, M.T., Nguyen, H.T.: Bound and exact methods for assessing link vulnerability in complex networks. J. Comb. Optim. 28(1), 3–24 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Joyce, K.E., Laurienti, P.J., Burdette, J.H., Hayasaka, S.: A new measure of centrality for brain networks. PLoS ONE 5(8), e12200 (2010)

    Article  Google Scholar 

  12. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence in a social network. In: Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  13. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Anil Kumar, V.S., Rajaraman, R., Sun, Z., Sundaram, R.: Existence theorems and approximation algorithms for generalized network security games. In: Proceedings of the 2010 IEEE 30th International Conference on Distributed Computing Systems, pp. 348–357 (2010)

    Google Scholar 

  15. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Dis. Data 1(1), 2–41 (2007)

    Article  Google Scholar 

  16. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS, pp. 548–556 (2012)

    Google Scholar 

  17. Nguyen, D.T., Shen, Y., Thai, M.T.: Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Trans. Smart Grid 4(1), 151–159 (2013)

    Article  Google Scholar 

  18. Opsahl, T.: Why anchorage is not (that) important: Binary ties and sample selection (2011). http://wp.me/poFcY-Vw

  19. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  20. Sporns, O.: Networks of the Brain. The MIT Press, Cambridge (2010)

    Google Scholar 

  21. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Comput. Oper. Res. 39(11), 2763–2775 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ventresca, M., Aleman, D.: Evaluation of strategies to mitigate contagion spread using social network characteristics. Soc. Netw. 35(1), 75–88 (2013)

    Article  Google Scholar 

  24. Ventresca, M., Aleman, D.: A derandomized approximation algorithm for the critical node detection problem. Comput. Oper. Res. 43, 261–270 (2014)

    Article  MathSciNet  Google Scholar 

  25. Ventresca, M., Aleman, D.: Network robustness versus multi-strategy sequential attack. J. Complex Netw. (2014)

    Google Scholar 

  26. Ventresca, M., Aleman, D.: A randomized algorithm with local search for containment of pandemic disease spread. Comput. Oper. Res. 48, 11–19 (2014)

    Article  MathSciNet  Google Scholar 

  27. Veremyev, A., Boginski, V., Pasiliao, E.L.: Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8(4), 1245–1259 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Veremyev, A., Prokopyev, O.A., Pasiliao, E.L.: An integer programming framework for critical elements detection in graphs. J. Comb. Optim. 28(1), 233–273 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 400–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ventresca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ventresca, M., Aleman, D. (2014). A Fast Greedy Algorithm for the Critical Node Detection Problem. In: Zhang, Z., Wu, L., Xu, W., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2014. Lecture Notes in Computer Science(), vol 8881. Springer, Cham. https://doi.org/10.1007/978-3-319-12691-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12691-3_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12690-6

  • Online ISBN: 978-3-319-12691-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics