Skip to main content

An \(\mathcal {O}(n \log n)\) Cutting Plane Algorithm for Structured Output Ranking

  • Conference paper
  • First Online:
  • 2752 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Abstract

In this work, we consider ranking as a training strategy for structured output prediction. Recent work has begun to explore structured output prediction in the ranking setting, but has mostly focused on the special case of bipartite preference graphs. The bipartite special case is computationally efficient as there exists a linear time cutting plane training strategy for hinge loss bounded regularized risk, but it is unclear how to feasibly extend the approach to complete preference graphs. We develop here a highly parallelizable \(\mathcal {O}(n \log n)\) algorithm for cutting plane training with complete preference graphs that is scalable to millions of samples on a single core. We explore theoretically and empirically the relationship between slack rescaling and margin rescaling variants of the hinge loss bound to structured losses, showing that the slack rescaling variant has better stability properties and empirical performance with no additional computational cost per cutting plane iteration. We further show generalization bounds based on uniform convergence. Finally, we demonstrate the effectiveness of the proposed family of approaches on the problem of object detection in computer vision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An edge from \(i\) to \(j\) in \(\mathcal {G}\) indicates that output \(i\) should be ranked above output \(j\). It will generally be the case that \(\varDelta _{j} \ge \varDelta _{i}\) for all \((i,j) \in \mathcal {E}\).

  2. 2.

    An analogous algorithm for margin rescaling was given in [16] and has the same computational complexity.

  3. 3.

    http://pages.saclay.inria.fr/matthew.blaschko/projects/structrank/

  4. 4.

    We assume a joint kernel map of the form given in [17, 18].

References

  1. Agarwal, S., Niyogi, P.: Generalization bounds for ranking algorithms via algorithmic stability. J. Mach. Learn. Res. 10, 441–474 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2010

    Google Scholar 

  3. Bakır, G.H., Hofmann, T., Schölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.: Predicting Structured Data. MIT Press, Cambridge (2007)

    Google Scholar 

  4. Blaschko, M.B., Lampert, C.H.: Learning to localize objects with structured output regression. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 2–15. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Blaschko, M.B., Vedaldi, A., Zisserman, A.: Simultaneous object detection and ranking with weak supervision. In: Advances in Neural Information Processing Systems (2010)

    Google Scholar 

  6. Bousquet, O., Elisseeff, A.: Stability and generalization. J. Mach. Learn. Res. 2, 499–526 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  8. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  9. Herbrich, R., Graepel, T., Obermayer, K.: Large margin rank boundaries for ordinal regression. In: Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 115–132. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Joachims, T.: Training linear SVMs in linear time. In: ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 217–226 (2006)

    Google Scholar 

  11. Joachims, T., Finley, T., Yu, C.N.: Cutting-plane training of structural SVMs. Mach. Learn. 77(1), 27–59 (2009)

    Article  MATH  Google Scholar 

  12. Lafferty, J., Zhu, X., Liu, Y.: Kernel conditional random fields: representation and clique selection. In: Proceedings of the International Conference on Machine Learning (2004)

    Google Scholar 

  13. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  14. McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.) Surveys in Combinatorics, pp. 148–188. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  15. Mittal, A., Blaschko, M.B., Zisserman, A., Torr, P.H.S.: Taxonomic multi-class prediction and person layout using efficient structured ranking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 245–258. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Rahtu, E., Kannala, J., Blaschko, M.B.: Learning a category independent object detection cascade. In: Proceedings of the International Conference on Computer Vision (2011)

    Google Scholar 

  17. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  18. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the International Conference on Machine Learning (2004)

    Google Scholar 

  19. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: Proceedings of the International Conference on Computer Vision (2009)

    Google Scholar 

  20. Vedaldi, A., Blaschko, M.B., Zisserman, A.: Learning equivariant structured output SVM regressors. In: Proceedings of the International Conference on Computer Vision, pp. 959–966 (2011)

    Google Scholar 

  21. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2002)

    Article  Google Scholar 

  22. Zhang, Z., Warrell, J., Torr, P.: Proposal generation for object detection using cascaded ranking SVMs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by ERC Grant 259112, and FP7-MC-CIG 334380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Blaschko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Blaschko, M.B., Mittal, A., Rahtu, E. (2014). An \(\mathcal {O}(n \log n)\) Cutting Plane Algorithm for Structured Output Ranking. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics