Skip to main content

Theories, Mechanisms and Patterns of Microbiome Species Coexistence in an Era of Climate Change

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Ecology ((BRIEFSECOLOGY))

Abstract

Understanding the mechanisms of microbiome species coexistence is one of the major challenges confronted by microbiome ecologists today. Recent research largely advocates that the niche, biogeographic, and neutral/stochastic processes interactively determine the microbiome community composition across spatio-temporal scales in the ecosystem. However, current research is mainly exploratory and descriptive, and it is still difficult to link the observed microbiome species or functional trait diversity patterns to the ecosystem functioning on local, regional, and global scales. Similarly, whether and how climate and land-use changes impact the patterns of microbiome functional ecology remains to be studied. Moreover, little is known about how climate and land-use changes are linked to evolution or loss of microbial functional traits. Future research should nevertheless investigate the patterns of microbiome functional diversity across the velocity of climate and land-use changes, and attempt to integrate the patterns with functions in broader contexts of functional traits and community ecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abboudi M, Jeffrey WH, Ghiglione J-F et al (2008) Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the Northwestern Mediterranean Sea during summer. Microb Ecol 55:344–357. doi:10.1007/s00248-007-9280-8

    CAS  PubMed  Google Scholar 

  • Adler PB, Lauenroth WK (2003) The power of time: spatiotemporal scaling of species diversity. Ecol Lett 6:749–756. doi:10.1046/j.1461-0248.2003.00497.x

    Google Scholar 

  • Agnelli A, Ascher J, Corti G et al (2004) Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biol Biochem 36:859–868. doi:10.1016/j.soilbio.2004.02.004

    CAS  Google Scholar 

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326. doi:10.1126/science.1060701

    CAS  PubMed  Google Scholar 

  • Allen AP, Gillooly JF (2006) Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol Lett 9:947–954. doi:10.1111/j.1461-0248.2006.00946.x

    PubMed  Google Scholar 

  • Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci U S A 103:9130–9135. doi:10.1073/pnas.0603587103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allewalt JP, Bateson MM, Revsbech NP et al (2006) Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the octopus spring microbial mat community of Yellowstone National Park. Appl Environ Microbiol 72:544–550. doi:10.1128/AEM.72.1.544-550.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Angel R, Soares MIM, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563. doi:10.1038/ismej.2009.136

    PubMed  Google Scholar 

  • Arnosti C, Steen AD, Ziervogel K et al (2011) Latitudinal gradients in degradation of marine dissolved organic carbon. PLoS One 6:e28900. doi:10.1371/journal.pone.0028900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. doi:10.1016/j.tibtech.2007.05.005

    CAS  PubMed  Google Scholar 

  • Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364–370. doi:10.1111/j.1365-2672.2007.03561.x

    CAS  PubMed  Google Scholar 

  • Astorga A, Oksanen J, Luoto M et al (2012) Distance decay of similarity in freshwater communities: do macro-and microorganisms follow the same rules? Glob Ecol Biogeogr 21:365–375. doi:10.1111/j.1466-8238.2011.00681.x

    Google Scholar 

  • Atlas RM, Bartha R (1981) Microbial ecology: fundamentals and applications. Addison-Wesley, Reading, pp. 560

    Google Scholar 

  • Baltar F, Aristeguil J, Gasol JM et al (2007) Strong coast-ocean and surface-depth gradients in prokaryotic assemblage structure and activity in a coastal transition zone region. Aquat Microb Ecol 50:63–74

    Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG et al (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917. doi:10.1038/ismej.2010.171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazzaz FA (1975) Plant species diversity in old-field successional ecosystems in Southern Illinois. Ecology 56:485–488. doi:10.2307/1934981

    Google Scholar 

  • Beck J, Chey VK (2008) Explaining the elevational diversity pattern of geometrid moths from Borneo: a test of five hypotheses. J Biogeogr 35:1452–1464. doi:10.1111/j.1365-2699.2008.01886.x

    Google Scholar 

  • Becker JM, Parkin T, Nakatsu CH et al. (2006) Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. Microb Ecol 51:220–231. doi:10.1007/s00248-005-0002-9

    PubMed  Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2413–2418. doi:10.1126/science.293.5539.2413

    CAS  PubMed  Google Scholar 

  • Bell T (2010) Experimental tests of the bacterial distance-decay relationship. ISME J 4:1357–1365. doi:10.1038/ismej.2010.77

    PubMed  Google Scholar 

  • Bell T, Ager D, Song J-I et al (2005) Larger islands house more bacterial taxa. Science 308:1884. doi:10.1126/science.1111318

    CAS  PubMed  Google Scholar 

  • Belnap CP, Pan C, Denef VJ et al (2011) Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions. ISME J 5:1152–1161. doi:10.1038/ismej.2010.200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bengtsson G, Törneman N, Lipthay JRD, Sørensen SJ (2013) Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations. Microb Ecol 65:91–100. doi:10.1007/s00248-012-0112-0

    CAS  PubMed  Google Scholar 

  • Bennett AF, Lenski RE (2007) An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci U S A 104:8649–8654. doi:10.1073/pnas.0702117104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bertics VJ, Ziebis W (2009) Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches. ISME J 3:1269–1285. doi:10.1038/ismej.2009.62

    CAS  PubMed  Google Scholar 

  • Bik EM, Long CD, Armitage GC et al (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4:962–974. doi:10.1038/ismej.2010.30

    PubMed Central  PubMed  Google Scholar 

  • Bodelier PL, Meima-Franke M, Hordijk CA et al (2013) Microbial minorities modulate methane consumption through niche partitioning. ISME J 7:2214–2228. doi:10.1038/ismej.2013.99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445. doi:10.2307/1935620

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP et al (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789. doi:10.1890/03–9000

    Google Scholar 

  • Bryant JA, Lamanna C, Morlon H et al (2008) Colloquium paper: microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105:11505–11511. doi:10.1073/pnas.0801920105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bukovinszky T, Veen FJF van, Jongema Y, Dicke M (2008) Direct and indirect effects of resource quality on food web structure. Science 319:804–807. doi:10.1126/science.1148310

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336

    CAS  PubMed  Google Scholar 

  • Burch AY, Finkel OM, Cho JK et al (2013) Diverse microhabitats experienced by Halomonas variabilis on salt-secreting leaves. Appl Environ Microbiol 79:845–852. doi:10.1128/AEM.02791–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chapin FS 3rd, Zavaleta ES, Eviner VT et al (2000) Consequences of changing biodiversity. Nature 405:234–242. doi:10.1038/35012241

    CAS  PubMed  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol System 31:343–366

    Google Scholar 

  • Chisholm RA, Lichstein JW (2009) Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecol Lett 12:1385–1393. doi:10.1111/j.1461–0248.2009.01389.x

    PubMed  Google Scholar 

  • Church MJ, DeLong EF, Ducklow HW et al (2003) Abundance and distribution of planktonic archaea and bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902. doi:10.4319/lo.2003.48.5.1893

    Google Scholar 

  • Claire Horner-Devine M Leibold MA Smith VH Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622. doi:10.1046/j.1461–0248.2003.00472.x

    Google Scholar 

  • Clarke A (2006) Temperature and the metabolic theory of ecology. Funct Ecol 20:405–412. doi:10.1111/j.1365–2435.2006.01109.x

    Google Scholar 

  • Cleary DFR, Becking LE, de Voogd NJ et al (2013) Habitat-and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiol Ecol 85:465–482. doi:10.1111/1574–6941.12135

    CAS  PubMed  Google Scholar 

  • Cohan FM, Koeppel AF (2008) The origins of ecological diversity in prokaryotes. Curr Biol 18:R1024–R1034. doi:10.1016/j.cub.2008.09.014

    CAS  PubMed  Google Scholar 

  • Coley PD, Bryant JP, Chapin FS (1985) Resource availability and plant antiherbivore defense. Science 230:895–899. doi:10.1126/science.230.4728.895

    CAS  PubMed  Google Scholar 

  • Connor N, Sikorski J, Rooney AP et al (2010) Ecology of speciation in the genus Bacillus. Appl Environ Microbiol 76:1349–58. doi:10.1128/AEM.01988-09

    Google Scholar 

  • Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. doi:10.1126/science.1177486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253–2268

    PubMed Central  PubMed  Google Scholar 

  • Curtis TP, Sloan WT (2005) Exploring microbial diversity–a vast below. Science 309:1331–1333. doi:10.1126/science.1118176

    CAS  PubMed  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499. doi:10.1073/pnas.142680199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. doi:10.1128/MMBR.64.4.847-867.2000

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darwin, C. (1859). On the origins of species by means of natural selection. Murray, London

    Google Scholar 

  • De Filippo C Cavalieri D Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696. doi:10.1073/pnas.1005963107

    PubMed Central  PubMed  Google Scholar 

  • DeLong EF, Preston CM, Mincer T et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503. doi:10.1126/science.1120250

    CAS  PubMed  Google Scholar 

  • Delpin MW, Goodman AE (2009) Nitrogen regulates chitinase gene expression in a marine bacterium. ISME J 3:1064–1069. doi:10.1038/ismej.2009.49

    CAS  PubMed  Google Scholar 

  • Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264. doi:10.1038/nature01274

    CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975. doi:10.1073/pnas.1002601107

    PubMed Central  PubMed  Google Scholar 

  • Eiler A, Langenheder S, Bertilsson S, Tranvik LJ (2003) Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl Environ Microbiol 69:3701–3709. doi:10.1128/AEM.69.7.3701-3709.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenlord SD, Zak DR, Upchurch RA (2012) Dispersal limitation and the assembly of soil Actinobacteria communities in a long-term chronosequence. Ecol Evolut 2:538–549. doi:10.1002/ece3.210

    Google Scholar 

  • Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4:457–469. doi:10.1038/nrg1088

    CAS  PubMed  Google Scholar 

  • Ellers J, Toby Kiers E, Currie CR et al (2012) Ecological interactions drive evolutionary loss of traits. Ecol Lett 15:1071–1082. doi:10.1111/j.1461-0248.2012.01830.x

    PubMed  Google Scholar 

  • Elliot SL, Blanford S, Thomas MB (2002) Host–pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc R Soc Lond B 269:1599–1607. doi:10.1098/rspb.2002.2067

    Google Scholar 

  • Enquist BJ, Economo EP, Huxman TE et al (2003) Scaling metabolism from organisms to ecosystems. Nature 423:639–642. doi:10.1038/nature01671

    CAS  PubMed  Google Scholar 

  • Enwall K, Throback IN, Stenberg M et al. (2010a) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol 76:2243–2250. doi:10.1128/AEM.02197-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enwall K, Throbäck IN, Stenberg M et al (2010b) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol 76:2243–2250. doi:10.1128/AEM.02197-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Escobar-Páramo P, Clermont O, Blanc-Potard A-B et al. (2004) A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol Biol Evol 21:1085–1094. doi:10.1093/molbev/msh118

    PubMed  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16 S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631. doi:10.1073/pnas.0507535103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176. doi:10.1016/S0038-0717(02)00251-1

    CAS  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007a) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839

    PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007b) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839

    PubMed  Google Scholar 

  • Fierer N, Lauber CL, Zhou N et al (2010) Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A 107:6477–6481. doi:10.1073/pnas.1000162107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fierer N, McCain CM, Meir P et al (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92:797–804

    PubMed  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS et al (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. doi:10.1038/ismej.2011.159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkel OM, Burch AY, Elad T et al (2012) Distance-decay diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert. Appl Environ Microbiol 78:6187–6193. doi:10.1128/AEM.00888-12

    Google Scholar 

  • Fraser C, Alm EJ, Polz MF et al (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746. doi:10.1126/science.1159388

    CAS  PubMed  Google Scholar 

  • Freilich S, Kreimer A, Meilijson I et al (2010) The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res 38:3857–3868. doi:10.1093/nar/gkq118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199. doi:10.1038/nature08058

    CAS  PubMed  Google Scholar 

  • Fuhrman JA, Hewson I, Schwalbach MS et al (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Natl Acad Sci U S A 103:13104–13109. doi:10.1073/pnas.0602399103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuhrman JA, Steele JA, Hewson I et al (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci U S A 105:7774–7778. doi:10.1073/pnas.0803070105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galand PE, Lovejoy C, Hamilton AK et al (2009) Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ Microbiol 11:971–980. doi:10.1111/j.1462–2920.2008.01822.x

    PubMed  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. doi:10.1146/annurev.phyto.42.012604.135455

    CAS  PubMed  Google Scholar 

  • Gengenbacher M, Kaufmann SHE (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36:514–532. doi:10.1111/j.1574–6976.2012.00331.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348. doi:10.1038/nature04158

    CAS  PubMed  Google Scholar 

  • Giraud A, Matic I, Tenaillon O et al (2001) Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science 291:2606–2608. doi:10.1126/science.1056421

    CAS  PubMed  Google Scholar 

  • Gordon DM, Cowling A (2003) The distribution and genetic structure of Escherichia coli in Australian vertebrates: host and geographic effects. Microbiology 149:3575–3586. doi:10.1099/mic.0.26486-0

    CAS  PubMed  Google Scholar 

  • Gravel D, Bell T, Barbera C et al (2011) Experimental niche evolution alters the strength of the diversity-productivity relationship. Nature 469:89–92. doi:10.1038/nature09592

    CAS  PubMed  Google Scholar 

  • Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043. doi:10.1126/science.1153475

    CAS  PubMed  Google Scholar 

  • Gundale MJ, Nilsson M, Bansal S, Jäderlund A (2012) The interactive effects of temperature and light on biological nitrogen fixation in boreal forests. New Phytolog 194:453–463. doi:10.1111/j.1469–8137.2012.04071.x

    CAS  Google Scholar 

  • Hansel CM, Fendorf S, Jardine PM, Francis CA (2008) Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl Environ Microbiol 74:1620–1633. doi:10.1128/AEM.01787-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Micro 10:497–506. doi:10.1038/nrmicro2795

    CAS  Google Scholar 

  • Harpole WS, Tilman D (2007) Grassland species loss resulting from reduced niche dimension. Nature 446:791–793. doi:10.1038/nature05684

    CAS  PubMed  Google Scholar 

  • Harrison F, Buckling A (2009) Siderophore production and biofilm formation as linked social traits. ISME J 3:632–634. doi:10.1038/ismej.2009.9

    CAS  PubMed  Google Scholar 

  • He F, Gaston KJ (2003) Occupancy, spatial variance, and the abundance of species. Am Nat 162:366–375. doi:10.1086/an.2003.162.issue-3

    PubMed  Google Scholar 

  • Hewson I, Steele JA, Capone DG, Fuhrman JA (2006) Remarkable heterogeneity in meso-and bathypelagic bacterioplankton assemblage composition. Limnol oceanogr 51:1274–1283

    Google Scholar 

  • Hollister EB, Engledow AS, Hammett AJM et al (2010a) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838

    CAS  PubMed  Google Scholar 

  • Hollister EB, Engledow AS, Hammett AJM et al (2010b) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838. doi:10.1038/ismej.2010.3

    CAS  PubMed  Google Scholar 

  • Hooper DU, Bignell DE, Brown VK et al (2000) Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks We assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship—depending on the strength and type of interactions among species. BioScience 50:1049–1061. doi:10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2

    Google Scholar 

  • Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa-area relationship for bacteria. Nature 432:750–753. doi:10.1038/nature03073

    CAS  PubMed  Google Scholar 

  • Horner-Devine MC, Silver JM, Leibold MA et al (2007) A comparison of taxon co-occurrence patterns for macro-and microorganisms. Ecology 88:1345–1353

    PubMed  Google Scholar 

  • Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172. doi:10.1111/j.0269–8463.2005.00965.x

    Google Scholar 

  • Huey RB, Kingsolver JG Evolution of resistance to high temperature in ectotherms. Am Nat 142:S21–S46

    Google Scholar 

  • Humboldt A von (1860) Ansichten der Natur: mit wissenschaftliehen Erläuterungen. J. G. Cotta

    Google Scholar 

  • Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of alpha-and beta-endosulfan by soil bacteria. Biodegradation 18:731–740. doi:10.1007/s10532-007-9102-1

    CAS  PubMed  Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009a) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907. doi:10.1080/10643380801910090

    CAS  Google Scholar 

  • Hussain S, Siddique T, Saleem M et al (2009b) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advan Agron 102:159–200 (Academic)

    Google Scholar 

  • Hussain S, Arshad M, Shaharoona B, Saleem M, Khalid A (2009c). Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 25(5):853–858. doi:10.1007/s11274-009-9958-9

    CAS  Google Scholar 

  • Hutchings MJ, John EA, Stewart AJA (2000) The ecological consequences of environmental heterogeneity: 40th symposium of the British Ecological Society. Cambridge University Press, Cambridge

    Google Scholar 

  • Jardillier L, Boucher D, Personnic S et al (2005) Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: microcosm experiments. FEMS Microbiol Ecol 53:429–443. doi:10.1016/j.femsec.2005.01.011

    CAS  PubMed  Google Scholar 

  • Jeraldo P, Sipos M, Chia N et al (2012) Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. Proc Natl Acad Sci U S A 109:9692–9698. doi:10.1073/pnas.1206721109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones SE, Lennon JT (2010) Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci U S A 107:5881–5886. doi:10.1073/pnas.0912765107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jousset A, Schmid B, Scheu S, Eisenhauer N (2011) Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecol Lett 14:537–545. doi:10.1111/j.1461-0248.2011.01613.x

    CAS  PubMed  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510. doi:10.1038/35054051

    CAS  PubMed  Google Scholar 

  • Kassen R, Rainey PB (2004) The ecology and genetics of microbial diversity. Annu Rev Microbiol 58:207–231. doi:10.1146/annurev.micro.58.030603.123654

    CAS  PubMed  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911. doi:16/j.soilbio.2005.08.006

    CAS  Google Scholar 

  • Kluge J, Kessler M, Dunn RR (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr 15:358–371. doi:10.1111/j.1466-822X.2006.00223.x

    Google Scholar 

  • Knight CG, Zhang XX, Gunn A et al (2010) Testing temperature-induced proteomic changes in the plant-associated bacterium Pseudomonas fluorescens SBW25. Environ Microbiol Rep 2:396–402. doi:10.1111/j.1758-2229.2009.00102.x

    CAS  PubMed  Google Scholar 

  • Koenig JE, Spor A, Scalfone N et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108:4578–4585. doi:10.1073/pnas.1000081107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101:3160–3165. doi:10.1073/pnas.0308653100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuang J-L, Huang L-N, Chen L-X et al (2013) Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J 7:1038–1050. doi:10.1038/ismej.2012.139

    CAS  PubMed Central  PubMed  Google Scholar 

  • LaMontagne M, Schimel J, Holden P (2003) Comparison of subsurface and surface soil bacterial communities in california grassland as assessed by terminal restriction fragment length polymorphisms of PCR-amplified 16 S rRNA genes. Microb Ecol 46:216–227. doi:10.1007/s00248-003-1006-y

    CAS  PubMed  Google Scholar 

  • Langenheder S, Prosser JI (2008a) Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ Microbiol 10:2245–2256. doi:10.1111/j.1462-2920.2008.01647.x

    CAS  PubMed  Google Scholar 

  • Langenheder S, Prosser JI (2008b) Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ Microbiol 10:2245–2256. doi:10.1111/j.1462-2920.2008.01647.x

    CAS  PubMed  Google Scholar 

  • Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094. doi:10.1038/ismej.2010.207

    PubMed Central  PubMed  Google Scholar 

  • Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity-ecosystem functioning relations are modified by environmental complexity. PLoS One 5:e10834. doi:10.1371/journal.pone.0010834

    PubMed Central  PubMed  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120. doi:10.1128/AEM.00335-09

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. doi:16/j.soilbio.2008.05.021

    CAS  Google Scholar 

  • Lee JE, Buckley HL, Etienne RS, Lear G (2013) Both species sorting and neutral processes drive assembly of bacterial communities in aquatic microcosms. FEMS Microbiol Ecol 86:288–302. doi:10.1111/1574-6941.12161

    CAS  PubMed  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x

    Google Scholar 

  • Leininger S, Urich T, Schloter M et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi:10.1038/nature04983

    CAS  PubMed  Google Scholar 

  • Lennon JT, Aanderud Z, Lehmkuhl B, Schoolmaster DR (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–1879. doi:10.1890/11-1745.1

    Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, Princeton

    Google Scholar 

  • Lin X, McKinley J, Resch CT et al (2012) Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer. ISME J 6:1665–1676. doi:10.1038/ismej.2012.26

    Google Scholar 

  • Lin W, Wang Y, Gorby Y et al (2013) Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. Sci Rep 3:1643. doi:10.1038/srep01643

    Google Scholar 

  • Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9. doi:10.1111/j.1758-2229.2011.00257.x

    PubMed  Google Scholar 

  • Locey KJ (2010) Synthesizing traditional biogeography with microbial ecology: the importance of dormancy. J Biogeogr 37:1835–1841. doi:10.1111/j.1365-2699.2010.02357.x

    Google Scholar 

  • Logue JB, Langenheder S, Andersson AF et al (2012) Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species-area relationships. ISME J 6:1127–1136. doi:10.1038/ismej.2011.184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp. : insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784. doi:10.1371/journal.pgen.1002784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095. doi:10.1128/AEM.72.5.3085-3095.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007a) Global patterns in bacterial diversity. PNAS 104:11436–11440. doi:10.1073/pnas.0611525104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007b) Global patterns in bacterial diversity. Proc Natl Acad Sci U S A 104:11436–11440. doi:10.1073/pnas.0611525104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch M, Gabriel W (1987) Environmental tolerance. Am Nat 129:283–303. doi:10.2307/2462004

    Google Scholar 

  • MacArthur RH (1966) On optimal use of a patchy environment. Am Nat 100:603–609. doi:10.1086/282454

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci Soc Am J 59:233. doi:10.2136/sssaj1995.03615995005900010036x

    CAS  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Micro 4:102–112. doi:10.1038/nrmicro1341

    CAS  Google Scholar 

  • Martiny JBH, Eisen JA, Penn K et al (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854. doi:10.1073/pnas.1016308108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Materna AC, Friedman J, Bauer C et al (2012) Shape and evolution of the fundamental niche in marine Vibrio. ISME J 6:2168–2177. doi:10.1038/ismej.2012.65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matz C, Kjelleberg S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307. doi:10.1016/j.tim.2005.05.009

    CAS  PubMed  Google Scholar 

  • Mayor DJ, Thornton B, Hay S et al (2012) Resource quality affects carbon cycling in deep-sea sediments. ISME J. doi:10.1038/ismej.2012.14

    Google Scholar 

  • McGill BJ (2003) A test of the unified neutral theory of biodiversity. Nature 422:881–885. doi:10.1038/nature01583

    CAS  PubMed  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185. doi:10.1016/j.tree.2006.02.002

    PubMed  Google Scholar 

  • McIntosh ACS, Macdonald SE, Quideau SA (2013) Linkages between the forest floor microbial community and resource heterogeneity within mature lodgepole pine forests. Soil Biol Biochem 63:61–72. doi:10.1016/j.soilbio.2013.03.028

    CAS  Google Scholar 

  • Meyer S, Wegener G, Lloyd KG et al (2013) Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin. Front Microbiol 4:207. doi:10.3389/fmicb.2013.00207

    Google Scholar 

  • Mihuc TB (1997) The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshwater Biol 37:455–462. doi:10.1046/j.1365-2427.1997.00175.x

    Google Scholar 

  • Milferstedt K, Youngblut ND, Whitaker RJ (2010) Spatial structure and persistence of methanogen populations in humic bog lakes. ISME J 4:764–776. doi:10.1038/ismej.2010.7

    CAS  PubMed  Google Scholar 

  • Miller SR, Castenholz RW (2000) Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Appl Environ Microbiol 66:4222–4229. doi:10.1046/j.1529-8817.1999.00001-143.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller SR, Strong AL, Jones KL, Ungerer MC (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl Environ Microbiol 75:4565–4572. doi:10.1128/AEM.02792-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331. doi:10.1111/j.1461-0248.2007.01020.x

    PubMed  Google Scholar 

  • Monroy F, van der Putten WH, Yergeau E et al (2012) Community patterns of soil bacteria and nematodes in relation to geographic distance. Soil Biol Biochem 45:1–7. doi:10.1016/j.soilbio.2011.10.006

    CAS  Google Scholar 

  • Mou X, Sun S, Edwards RA et al (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451:708–711. doi:10.1038/nature06513

    CAS  PubMed  Google Scholar 

  • Mouser PJ, N’Guessan AL, Elifantz H et al (2009) Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ Sci Technol 43:4386–4392

    CAS  PubMed  Google Scholar 

  • Myers RJK (1975) Temperature effects on ammonification and nitrification in a tropical soil. Soil Biol Biochem 7:83–86. doi:10.1016/0038-0717(75)90003-6

    CAS  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. doi:10.1046/j.1365-2699.1999.00305.x

    Google Scholar 

  • Nelson CE (2009) Phenology of high-elevation pelagic bacteria: the roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. ISME J 3:13–30

    CAS  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW et al (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361. doi:10.1128/MMBR.68.2.345-361.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD et al (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci U S A 104:1266–1271. doi:10.1073/pnas.0603422104

    PubMed Central  PubMed  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed Central  PubMed  Google Scholar 

  • Oakley BB, Carbonero F, van der Gast CJ et al (2010) Evolutionary divergence and biogeography of sympatric niche-differentiated bacterial populations. ISME J 4:488–497

    PubMed  Google Scholar 

  • Ofiţeru ID, Lunn M, Curtis TP et al (2010) Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci U S A 107:15345–15350. doi:10.1073/pnas.1000604107

    PubMed Central  PubMed  Google Scholar 

  • Oliver AE, Lilley AK, van der Gast C (2012) Species-time relationships for bacteria. In: Ogilvie LA, Hirsch PR (eds) Microbial ecological theory: current perspectives. Caister Academic Press, Norfolk, 71–85.

    Google Scholar 

  • Pagaling E, Wang H, Venables M et al (2009) Microbial biogeography of six salt lakes in inner Mongolia China and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760. doi:10.1128/AEM.00040-09

    Google Scholar 

  • Parangan-Smith A, Lindow S (2013) Contribution of nitrate assimilation to the fitness of Pseudomonas syringae pv. syringae B728a on Plants. Appl Environ Microbiol 79:678–687. doi:10.1128/AEM.02511-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul EA (2006) Soil microbiology, ecology and biochemistry. Academic, Waltham

    Google Scholar 

  • Philippot L, Renault P, Sierra J et al (1996) Dissimilatory nitrite-reductase provides a competitive advantage to Pseudomonas spp. RTC01 to colonise the centre of soil aggregates. FEMS Microbiol Ecol 21:175–185. doi:10.1111/j.1574-6941.1996.tb00345.x

    CAS  Google Scholar 

  • Philippot L, Čuhel J, Saby NPA et al (2009) Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environ Microbiol 11:1518–1526. doi:10.1111/j.1462-2920.2009.01879.x

    PubMed  Google Scholar 

  • Pianka ER (1970) On r-and K-selection. Am Nat 104:592–597

    Google Scholar 

  • Pickett STA, Cadenasso ML (1995) Landscape ecology: spatial heterogeneity in ecological systems. Science 269:331–334. doi:10.1126/science.269.5222.331

    CAS  PubMed  Google Scholar 

  • Polis GA, Power ME, Huxel GR (2004) Food webs at the landscape level. University of Chicago Press, Chicago

    Google Scholar 

  • Pommier T, Canbäck B, Riemann L et al (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880. doi:10.1111/j.1365-294X.2006.03189.x

    CAS  PubMed  Google Scholar 

  • Porter SS, Rice KJ (2013) Trade-offs, spatial heterogeneity, and the maintenance of microbial diversity. Evolution 67:599–608. doi:10.1111/j.1558-5646.2012.01788.x

    PubMed  Google Scholar 

  • Preheim SP, Boucher Y, Wildschutte H et al (2011) Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ Microbiol 13:265–275. doi:10.1111/j.1462-2920.2010.02328.x

    CAS  PubMed  Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Micro 5:384–392. doi:10.1038/nrmicro1643

    CAS  Google Scholar 

  • Qvit-Raz N, Finkel OM, Al-Deeb TM et al (2012) Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region. Res Microbiol 163:142–150. doi:10.1016/j.resmic.2011.11.006

    PubMed  Google Scholar 

  • Rahbek C (1997) The relationship among area, elevation, and regional species richness in neotropical birds. Am Nat 149:875–902

    CAS  PubMed  Google Scholar 

  • Ranjard L, Richaume A, Jocteur-Monrozier L, Nazaret S (1997) Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location. FEMS Microbiol Ecol 24:321–331. doi:10.1111/j.1574-6941.1997.tb00449.x

    CAS  Google Scholar 

  • Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N et al (2013) Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun 4:1434. doi:10.1038/ncomms2431

    CAS  PubMed  Google Scholar 

  • Rasche F, Knapp D, Kaiser C et al (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402. doi:10.1038/ismej.2010.138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4680–4687. doi:10.1073/pnas.1002611107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2005) Does ecosystem size determine aquatic bacterial richness? Ecology 86:1715–1722. doi:10.1890/04-1587

    Google Scholar 

  • Reeve JR, Schadt CW, Carpenter-Boggs L et al (2010) Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J 4:1099–1107. doi:10.1038/ismej.2010.42

    PubMed  Google Scholar 

  • Rinaldo A, Maritan A, Cavender-Bares KK, Chisholm SW (2002) Cross–scale ecological dynamics and microbial size spectra in marine ecosystems. Proc R Soc Lond B 269:2051–2059. doi:10.1098/rspb.2002.2102

    Google Scholar 

  • Rosselló-Mora R, Lucio M, Peña A et al (2008) Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME J 2:242–253. doi:10.1038/ismej.2007.93

    PubMed  Google Scholar 

  • Roumagnac P, Weill F-X, Dolecek C et al (2006) Evolutionary history of Salmonella Typhi. Science 314:1301–1304. doi:10.1126/science.1134933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabehi G, Kirkup BC, Rozenberg M et al (2007) Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas. ISME J 1:48–55. doi:10.1038/ismej.2007.10

    CAS  PubMed  Google Scholar 

  • Saleem M (2012) Bacteria-protist interactions in the context of biodiversity and ecosystem functioning research (Doctoral dissertation)

    Google Scholar 

  • Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco-and agro-biotechnological processes: theory and practice. Trends Biotechnol 32:529–537

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. doi:10.1007/s10295-007-0240-6

    CAS  PubMed  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008). Perspectives on microbial cell surface display in bioremediation. Biotechnol adv 26(2):151–161. doi:10.1016/j.biotechadv.2007.10.002

    CAS  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Dormann CF et al (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:1305. doi:10.1038/ncomms2287

    PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–1921. doi:10.1038/ismej.2013.95

    PubMed Central  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2015) Trophic complexity in aqueous systems: Bacterial species richness and protistan predation regulate DOC and DTN removal

    Google Scholar 

  • Scala DJ, Kerkhof LJ (2000) Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by Terminal Restriction Fragment Length Polymorphism Analysis. Appl Environ Microbiol 66:1980–1986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schauer R, Bienhold C, Ramette A, Harder J (2010) Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J 4:159–170. doi:10.1038/ismej.2009.106

    CAS  PubMed  Google Scholar 

  • Schmidt O, Horn MA, Kolb S, Drake HL (2014) Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil. Environ Microbiol. doi:10.1111/1462–2920.12507

    Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG et al (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559. doi:10.1038/nature08031

    CAS  PubMed  Google Scholar 

  • Sessitsch A, Weilharter A, Gerzabek MH et al (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224. doi:10.1128/AEM.67.9.4215-4224.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shade A, Gregory Caporaso J, Handelsman J et al (2013) A meta-analysis of changes in bacterial and archaeal communities with time. ISME J 7:1493–1506. doi:10.1038/ismej.2013.54

    PubMed Central  PubMed  Google Scholar 

  • Sharma S, Szele Z, Schilling R et al (2006) Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Appl Environ Microbiol 72:2148–2154. doi:10.1128/AEM.72.3.2148-2154.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176. doi:10.1016/S0169-5347(02)02495-3

    Google Scholar 

  • Shrestha PM, Noll M, Liesack W (2007) Phylogenetic identity, growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. Environ Microbiol 9:2464–2474. doi:10.1111/j.1462-2920.2007.01364.x

    CAS  PubMed  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19:605–611. doi:10.1016/j.tree.2004.09.003

    Google Scholar 

  • Singer RS, Ward MP, Maldonado G (2006) Can landscape ecology untangle the complexity of antibiotic resistance? Nat Rev Microbiol 4:943–952. doi:10.1038/nrmicro1553

    CAS  PubMed  Google Scholar 

  • Singer G, Besemer K, Schmitt-Kopplin P et al (2010) Physical heterogeneity increases biofilm resource use and its molecular diversity in stream mesocosms. PLoS One 5:e9988. doi:10.1371/journal.pone.0009988

    PubMed Central  PubMed  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798. doi:10.1038/nature08632

    CAS  PubMed  Google Scholar 

  • Stach JEM, Maldonado LA, Masson DG et al. (2003) Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl Environ Microbiol 69:6189–6200. doi:10.1128/AEM.69.10.6189-6200.2003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stanford G, Dzienia S, Vander Pol RA (1975) Effect of temperature on denitrification rate in soils. Soil Sci Soc Am J 39:867. doi:10.2136/sssaj1975.03615995003900050024x

    CAS  Google Scholar 

  • Stegen JC, Lin X, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664. doi:10.1038/ismej.2012.22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stehli FG, Douglas RG, Newell ND (1969) Generation and maintenance of gradients in taxonomic diversity. Science 164:947–949. doi:10.1126/science.164.3882.947

    CAS  PubMed  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. Proc Natl Acad Sci U S A 108:20627–20632. doi:10.1073/pnas.1106950108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steunou A-S, Bhaya D, Bateson MM et al (2006) In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc Natl Acad Sci U S A 103:2398–2403. doi:10.1073/pnas.0507513103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113. doi:10.1111/1574-6941.12143

    CAS  PubMed  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal Range: an extension of papoport’s latitudinal rule to altitude. Am Nat 140:893–911

    CAS  PubMed  Google Scholar 

  • Stevens MHH, Carson WP (2002) Resource quantity, not resource heterogeneity, maintains plant diversity. Ecol Lett 5:420–426. doi:10.1046/j.1461-0248.2002.00333.x

    Google Scholar 

  • Tews J, Brose U, Grimm V et al. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31:79–92. doi:10.1046/j.0305-0270.2003.00994.x

    Google Scholar 

  • Tilman D (1982a) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklef RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago,pp 13–25

    Google Scholar 

  • Treves DS, Xia B, Zhou J, Tiedje JM (2003) A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb Ecol 45:20–28. doi:10.1007/s00248-002-1044-x

    CAS  PubMed  Google Scholar 

  • Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56:430–443. doi:10.1111/j.1574-6941.2006.00085.x

    CAS  PubMed  Google Scholar 

  • Väisänen RK, Roberts MS, Garland JL et al (2005) Physiological and molecular characterisation of microbial communities associated with different water-stable aggregate size classes. Soil Biol Biochem 37:2007–2016. doi:10.1016/j.soilbio.2005.02.037

    Google Scholar 

  • Vallino JJ, Hopkinson CS, Hobbie JE (1996) Modeling bacterial utilization of dissolved organic matter: optimization replaces Monod growth kinetics. Limnol Oceanogr 41:1591–1609

    CAS  Google Scholar 

  • Van den Abbeele P Verstraete W El Aidy S et al (2013) Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. Microb Biotechnol 6:335–340. doi:10.1111/1751-7915.12049

    PubMed Central  PubMed  Google Scholar 

  • Van Der Gast CJ Ager D Lilley AK (2008) Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors. Environ Microbiol 10:1411–1418. doi:10.1111/j.1462-2920.2007.01550.x

    PubMed  Google Scholar 

  • Vasileiadis S, Puglisi E, Arena M et al (2013) Soil microbial diversity patterns of a lowland spring environment. FEMS Microbiol Ecol 86:172–184. doi:10.1111/1574-6941.12150

    CAS  PubMed  Google Scholar 

  • Velicer GJ, Lenski RE (1999) Evolutionary trade-offs under conditions of resource abundance and scarcity: experiments with bacteria. Ecology 80:1168–1179. doi:10.1890/0012-9658(1999)080[1168:ETOUCO]2.0.CO;2

    Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206. doi:10.1086/652373

    PubMed  Google Scholar 

  • Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B et al (2008) Multilocus sequence snalysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic Continent. Appl Environ Microbiol 74:6987–6996. doi:10.1128/AEM.00875-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walk ST, Alm EW, Calhoun LM et al (2007) Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ Microbiol 9:2274–2288. doi:10.1111/j.1462-2920.2007.01341.x

    PubMed  Google Scholar 

  • Wallace AR (1878) Tropical nature: and other essays. Macmillan, London

    Google Scholar 

  • Wallenstein M, Hall E (2012) A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109:35–47. doi:10.1007/s10533-011-9641-8

    Google Scholar 

  • Walters SP, González-Escalona N, Son I et al (2013) Salmonella enterica diversity in central Californian coastal waterways. Appl Environ Microbiol 79:4199–4209. doi:10.1128/AEM.00930-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Soininen J, He J, Shen J (2012) Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep 4:217–226. doi:10.1111/j.1758-2229.2011.00324.x

    PubMed  Google Scholar 

  • Wang J, Shen J, Wu Y et al (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321. doi:10.1038/ismej.2013.30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber CF, King GM (2009) Water stress impacts on bacterial carbon monoxide oxidation on recent volcanic deposits. ISME J 3:1325–1334. doi:10.1038/ismej.2009.70

    CAS  PubMed  Google Scholar 

  • Weltzer ML, Miller SR (2013) Ecological divergence of a novel group of Chloroflexus strains along a geothermal gradient. Appl Environ Microbiol 79:1353–1358. doi:10.1128/AEM.02753-12

    CAS  PubMed Central  PubMed  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607. doi:10.1038/nrmicro1461

    CAS  PubMed  Google Scholar 

  • White EP (2004) Two-phase species–time relationships in North American land birds. Ecol Lett 7:329–336. doi:10.1111/j.1461-0248.2004.00581.x

    Google Scholar 

  • Winter C, Moeseneder MM, Herndl GJ, Weinbauer MG (2008) Relationship of geographic distance, depth, temperature, and viruses with prokaryotic communities in the eastern tropical Atlantic Ocean. Microb Ecol 56:383–389. doi:10.1007/s00248–007-9343-x

    PubMed  Google Scholar 

  • Winter C, Matthews B, Suttle CA (2013) Effects of environmental variation and spatial distance on Bacteria, Archaea and viruses in sub-polar and arctic waters. ISME J 7:1507–1518. doi:10.1038/ismej.2013.56

    PubMed Central  PubMed  Google Scholar 

  • Woodcock S, Curtis TP, Head IM et al (2006) Taxa–area relationships for microbes: the unsampled and the unseen. Ecol Lett 9:805–812. doi:10.1111/j.1461-0248.2006.00929.x

    PubMed  Google Scholar 

  • Woodcock S, Van Der Gast CJ, Bell T et al (2007) Neutral assembly of bacterial communities. FEMS Microbiol Ecol 62:171–180. doi:10.1111/j.1574-6941.2007.00379.x

    CAS  PubMed  Google Scholar 

  • Wu Y, Ke X, Hernández M et al (2013) Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures. Appl Environ Microbiol 79:3076–3084. doi:10.1128/AEM.00061-13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yavitt J, Yashiro E, Cadillo-Quiroz H, Zinder S (2012) Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry 109:117–131. doi:10.1007/s10533-011-9644-5

    CAS  Google Scholar 

  • Zhang C, Kang Q, Wang X et al. (2010) Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media. Environ Sci Technol 44:3085–3092. doi:10.1021/es903396h

    CAS  PubMed  Google Scholar 

  • Zhou J, Xia B, Treves DS et al (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334. doi:10.1128/AEM.68.1.326-334.2002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Xia B, Huang H et al (2004) Microbial diversity and heterogeneity in sandy subsurface soils. Appl Environ Microbiol 70:1723–1734. doi:10.1128/AEM.70.3.1723-1734.2004

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saleem, M., Pervaiz, Z., Traw, M. (2015). Theories, Mechanisms and Patterns of Microbiome Species Coexistence in an Era of Climate Change. In: Microbiome Community Ecology. SpringerBriefs in Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-11665-5_2

Download citation

Publish with us

Policies and ethics