Skip to main content

UNDATA: A Preliminary Cellular Automata Model for Tsunami Simulation

  • Conference paper
  • 3030 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Abstract

The Cellular Automata (CA) model UNDATA for tsunami simulation is here presented. UNDATA was developed in order to be coupled to SCIDDICA, a CA efficient model for subaerial/subaqueous flow type landslides for cases when a displacement in water of a significant volume could generate a tsunami. This model works also for different generating causes. Applications to theoretic and real cases are satisfying.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aida, I.: Numerical Experiments for the Tsunami Propagation – The 1964 Niigata Tsunami and the 1968 Tokachi-oki Tsunami. Bull. Earthq. Res. Inst. 47, 673–700 (1969)

    Google Scholar 

  2. Avolio, M.V., Crisci, G.M., D’Ambrosio, D., Di Gregorio, S., Iovine, G., Rongo, R., Spataro, W.: An extended notion of Cellular Automata for surface flows modelling. WSEAS Transactions on Computers 2(4), 1080–1085 (2003)

    Google Scholar 

  3. Avolio, M.V., Lupiano, V., Mazzanti, P., Di Gregorio, S.: Modelling combined subaerial-subaqueous flow-like landslides by Cellular Automata. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 329–336. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Avolio, M.V., Lupiano, V., Mazzanti, P., Di Gregorio, S.: An advanced Cellular Model for Flow-type Landslide with Simulations of Subaerial and Subaqueous cases. In: Wohlgemuth, V., Page, B., Voigt, K. (eds.) EnviroInfo 2009, Environmental Informatics and Industrial Environmenal Protection: Concepts, Methods and Tools, Proc. of the 23rd International Conference on Informatics for Environmental Protection, September 09-11, vol. 1, pp. 131–140. HTW Berlin, University of Applied Sciences, Germany (2009) ISBN 978-3-8322-8397-1

    Google Scholar 

  5. Avolio, M.V., Di Gregorio, S., Lupiano, V., Mazzanti, P., Spataro, W.: Application context of the SCIDDICA model family for simulations of flow-like landslides. In: Proceedings of the 2010 International Conference on Scientific Computing, Las Vegas, Nevada, USA, July 12-15, pp. 40–46. CSREA Press (2010) ISBN 1-60132-137

    Google Scholar 

  6. Avolio, M.V., Di Gregorio, S., Lupiano, V., Mazzanti, P.: SCIDDICA-SS3: A New Version of Cellular Automata Model for Simulating Fast Moving Landslides. The Journal of Supercomputing (2013), doi:10.1007/s11227-013-0948-1, ISSN 0920-8542

    Google Scholar 

  7. Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cambrige University Press Collection Alea (1998)

    Google Scholar 

  8. Christopoulos, C.: The Transmission Line Modeling Method: TLM. IEEE Press, Piscataway (1995)

    Book  Google Scholar 

  9. de Cogan, D., O’Connor, W.J., Pulko, S.: Transmission Line Matrix in Computational Mechanics. CRC Press (2006)

    Google Scholar 

  10. Di Gregorio, S., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems 16(2/3), 259–271 (1999)

    Article  Google Scholar 

  11. Frandsen, J.B.: Free-surface lattice Boltzmann modeling in single phase flows. Advances in Coastal and Ocean Engineering 10, 163–219 (2008)

    Article  Google Scholar 

  12. Friedrichs, K.O.: On the Derivation of Shallow Water Theory (Appendix to The Formation of Breakers and Bores, by J. J. Stoker). Comm. Pure Applied Math. 1, 81–85 (1948)

    Google Scholar 

  13. Gullace, F.: Verifica di alcune ipotesi per l’introduzione della fenomenologia dello tsunami in un modello ad automi cellulari per frane subaeree/subacquee. “Laurea thesis” in Italian, Dept of Physics, Univ. of Calabria (2011)

    Google Scholar 

  14. Hammack, J.L.: A Note on Tsunamis: Their Generation and Propagation in an Ocean of Uniform Depth. J. Fluid Mech. 60, 769–799 (1973)

    Article  MATH  Google Scholar 

  15. Harbitz, C.B.: Model Simulation of Tsunamis Generated by Storegga Slides. Marine Geology 104, 1–21 (1992)

    Article  Google Scholar 

  16. Janßen, C.F., Grilli, S.T., Krafczyk, M.: Efficient simulations of long wave propagation and runup using a LBM approach on GPGPU hardware. In: Proc. 22nd Offshore and Polar Engng. Conf. (ISOPE 2012), Rodos, Greece, June 17-22, pp. 145–152 (2012)

    Google Scholar 

  17. Mazzanti, P., Bozzano, F., Esposito, C.: Submerged landslides morphologies in the Albano lake (Rome, Italy). In: Lykousis, V., Sakellariou, J.L.D. (eds.) Proc. of 3rd Intern. Symp. Submarine Mass Movements and Their Consequences, Lugano, Switzerland. Advances in Natural and Technological Hazards Research, vol. 27, pp. 243–250. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Mazzanti, P., Bozzano, F., Avolio, M.V., Lupiano, V., Di Gregorio, S.: 3D numerical modelling of submerged and coastal landslides propagation. In: Mosher, D.C., Shipp, C., Moscardelli, L., Chaytor, J., Baxter, C., Lee, H., Urgeles, R. (eds.) Submarine Mass Movements and Their Consequences IV. Fourth International Symposium on Submarine Mass Movements and their Consequences, Austin, Texas, November 8-11. Advances in Natural and Technological Hazards Research, vol. 28, pp. 127–138. Springer, Netherlands (2009)

    Google Scholar 

  19. Mazzanti, P.: Personal communication (2011)

    Google Scholar 

  20. Mohamed, E.S., Rajasekaran, S.: Propagation of Tsunami Waves Multi-Factor Spread Simulation Based on CA Model. COMPUSOFT, An International Journal of Advanced Computer Technology 2(8) (2013)

    Google Scholar 

  21. Nelson, S.A.: Tsunami, Natural Disasters (October 2010), www.tulane.edu/~sanelson/geol204/tsunami.htm

  22. Papadopoulos, G.A., Daskalaki, E., Fokaefs, A.: Tsunamis Generated by Coastal and Submarine Landslides in the Mediterranean Sea. In: Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol. 27, pp. 415–422 (2007)

    Google Scholar 

  23. Tinti, S., Bortolucci, E., Chiavettieri, C.: Tsunami Excitation by Submarine Slides in Shallow-water Approximation. Pure and Applied Geophysics. Birkhäuser Verlag, Basel (2001)

    Google Scholar 

  24. Tinti, S., Pagnoni, G., Zaniboni, F.: The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulation. Springer (2005)

    Google Scholar 

  25. Tinti, S., Pagnoni, G., Zaniboni, F., Manucci, A.: Stromboli Island (Italy): Scenarios of Tsunamis Generated by Submarine Landslides. Pure and Applied Geophysics. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  26. Toffoli, T.: Cellular Automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica 10D, 117–127 (1984)

    Google Scholar 

  27. von Neumann, J.: Theory of self reproducing automata. University of Illinois Press (1966)

    Google Scholar 

  28. Wolfram, S.: A new kind of science. Wolfram media Inc. (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gullace, F., Avolio, M.V., Di Gregorio, S. (2014). UNDATA: A Preliminary Cellular Automata Model for Tsunami Simulation. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics