Skip to main content

Nonlinear Hyperbolic Systems of Conservation Laws and Related Applications

  • Chapter
  • First Online:
Evolutionary Equations with Applications in Natural Sciences

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2126))

Abstract

In this course evolution equations defining non-linear hyperbolic conservation laws, some general theory of non-linear systems of conservation laws and solution methods will be presented. The notions of a weak solution and entropy will be introduced. This will lead into an investigation of solutions of the so called Riemann problem. For scalar conservation laws, analytical solutions will be derived using characteristics methods. In general numerical methods are used to solve or simulate such problems. Therefore, ideas guiding the design of numerical schemes for such equations will be discussed. Some numerical schemes for the numerical integration of such initial boundary value problems related to systems of conservation laws will be analyzed. A collection of case studies from application areas like gas dynamics, and networked flow will be used to demonstrate how non-linear hyperbolic conservation laws are used to model, understand and predict the dynamics governing real-world problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Aregba-Driollet, R. Natalini, Discrete kinetic schemes for multidimensional conservation laws. SIAM J. Numer. Anal. 37, 1973–2004 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. M.K. Banda, Variants of relaxed schemes and two-dimensional gas dynamics. J. comp. Appl. Math. 175, 41–62 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. M.K. Banda, M. Herty, Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Math. Control Relat. Fields 3, 121–142 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. M.K Banda, M. Seaïd, A class of the relaxation schemes for two-dimensional Euler systems of gas dynamics. Lect. Notes Comput. Sci. 2329, 930–939 (2002)

    Article  Google Scholar 

  5. M.K. Banda, M. Seaïd, Higher-order relaxation schemes for hyperbolic systems of conservation laws. J. Numer. Math. 13, 171–196 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. M.K. Banda, M. Seaïd, Teleaga discrete-velocity relaxation methods for large-eddy simulation. Appl. Math. Comput. 182, 739–753 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. M.K Banda, M. Seaïd, A. Klar, L. Pareschi, Compressible and incompressible limits for hyperbolic systems with relaxation.J. Comput. Appl. Math. 168, 41–52 (2004)

    Google Scholar 

  8. M.K. Banda, M. Herty, A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterog. Media 1, 295–314 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. M.K. Banda, M. Herty, A. Klar, Gas flow in pipeline networks. Netw. Heterog. Media 1, 41–56 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. M.K. Banda, A. Klar, M. Seaïd, A lattice Boltzman relaxation scheme for coupled convection-radiation systems. J. Comput. Phys. 226, 1408–1431 (2007). doi:10:1016/j.jcp.2007.05.030

    Google Scholar 

  11. M.K. Banda, A. Klar, L. Pareschi, M. Seaïd, Lattice-Boltzmann type relaxation systems and high order relaxation schemes for the incompressible Navier–Stokes equations. Math. Comput. 77, 943–965 (2008). doi:10.1090/S0025-5718-07-02034-0

    Article  MATH  Google Scholar 

  12. M.K. Banda, M. Herty, J.-M.T. Ngnotchouye, Towards a mathematical analysis for drift-flux multiphase flow models in networks. SIAM J. Sci. Comput. 31, 4633–4653 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Ben-Arzti, J. Falcovitz, Recent developments of the GRP method. JSME (Ser. b) 38, 497–517 (1995)

    Google Scholar 

  14. F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics (Birkhäuser, Basel, 2004)

    Google Scholar 

  15. A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford Lecture Series in Mathematics and its applications, vol 20 (Oxford University Press, Oxford, 2005)

    Google Scholar 

  16. T. Chang, L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics. Pitman Monographs and surveys in pure appl. math., vol 41 (Wiley, New York, 1989)

    Google Scholar 

  17. N.H. Chen, An explicit equation for friction factor in pipes. Ind. Eng. Chem. Fund. 18, 296–297 (1979)

    Article  Google Scholar 

  18. E. Chiodaroli, C. De Lellis, O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. arXiv:1304.0123v2 (2013)

    Google Scholar 

  19. R.M. Colombo, M. Garavello, A well–posed Riemann problem for the p-system at a junction. Netw. Heterog. Media 1, 495–511 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. J.-M. Coron, Local controllability of a 1-D tank containing a fluid modelled by the shallow water equations. ESAIM 8, 513–554 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. J.-M. Coron, Control and Nonlinearity. Mathematical Surveys and Monographs, vol 136 (American Mathematical Society, Providence, 2007)

    Google Scholar 

  22. J.-M. Coron, G. Bastin, B. d’Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control. Optim. 47, 1460–1498 (2008)

    Google Scholar 

  23. M.G. Crandall, The semigroup approach to first order quasilinear equations in several space dimensions. Israel J. Math. 12, 108–132 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. M.G. Crandall, L. Tartar, Some relations between non expansive and order preserving mapping. Proc. Am. Math. Soc. 78, 385–390 (1970)

    Article  MathSciNet  Google Scholar 

  25. Crane Valve Group, Flow of fluids through valves, fittings and pipes, Crane Technical Paper No. 410 (1998)

    Google Scholar 

  26. C.M. Dafermos, Hyperbolic Conservation Laws in Continum Physics. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 3rd edn, vol 325 (Springer, New York, 2010)

    Google Scholar 

  27. C. De Lellis, L. Szekelyhidi Jr., On admissibility criteria for weak solutions on the Euler equations. Arch. Rational Mech. Anal. 195, 225–260 (2010)

    Article  MATH  Google Scholar 

  28. K. Ehrhardt, M. Steinbach, Nonlinear gas optimization in gas networks, in Modeling, Simulation and Optimization of Complex Processes, eds. by H.G. Bock, E. Kostina, H.X. Pu, R. Rannacher (Springer, Berlin, 2005)

    Google Scholar 

  29. V. Elling, A possible counterexample to well posedness of entropy solutions and to Godunov scheme convergence. Math. Comput. 75, 1721–1733 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, vol VII (North-Holland, Amsterdam, 2000) pp.713–1020

    Google Scholar 

  31. M. Garavello, B. Piccoli, Traffic Flow on Networks. AIMS Series on Applied Mathematics, vol 1 (AIMS, Springfield, 2006)

    Google Scholar 

  32. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  33. E. Godlewski, P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws (Springer, New York, 1996)

    Book  Google Scholar 

  34. S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Gugat, M. Herty, A. Klar, G. Leugering, V. Schleper, Well-posedness of networked hyperbolic systems of balance laws. Int. Ser. Numer. Math. 160, 123–146 (2012)

    MathSciNet  Google Scholar 

  36. A. Harten, M. Hyman, P. Lax, On finite-difference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29, 297–322 (1982)

    Article  MathSciNet  Google Scholar 

  37. M. Herty, M. Rascle, Coupling conditions for a class of second order models for traffic flow. SIAM J. Math. Anal. 38, 592–616 (2006)

    Article  MathSciNet  Google Scholar 

  38. C. Hirsch, Numerical Computation of Internal and External Flows (Wiley, New York, 1988)

    MATH  Google Scholar 

  39. S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276

    Google Scholar 

  40. A. Klar, Relaxation schemes for a Lattice Boltzmann type discrete velocity model and numerical Navier–Stokes limit. J. Comp. Phys. 148, 1–17 (1999)

    Article  MathSciNet  Google Scholar 

  41. A. Klar, L. Pareschi, M. Seaïd, Uniformly accurate schemes for relaxation approximations to fluid dynamic equations. Appl. Math. Lett. 16, 1123–1127 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. D. Kröner, Numerical Schemes for Conservation Laws. Wiley-Teubner Series in Advances in Numerical Mathematics (Wiley, Chichester, 1997)

    Google Scholar 

  43. S.N. Kruzkov, First order quasilinear equations in several independent variables. Math. USSR Sbornik 10, 217–243 (1970)

    Article  Google Scholar 

  44. A. Kurganov, D. Levy, A third-order semi-discrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22, 1461–1488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. A. Kurganov, E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (SIAM, Philadelphia, 1973)

    Book  MATH  Google Scholar 

  47. P. Lax, B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  48. P.G. LeFloch, Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics. ETH Zurich (Birkhäuser, Basel, 2002). ISBN:3-7643-6687-7

    Google Scholar 

  49. F. LeFloch, P.A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem, part I: general theory. Ann. Inst. H. Poincare. Nonlinear Anal. 5, 179 (1988)

    MathSciNet  Google Scholar 

  50. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  51. T. Li, B. Rao, Z. Wang, Contrôlabilité observabilité unilatérales de systèmes hyperboliques quasi-linéaires. C. R. Math. Acad. Sci. Paris 346, 1067–1072 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. T.-P. Liu, The entropy condition and admissibility of shocks. J. Math. Anal. Appl. 53, 78–88 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  53. T.-P. Liu, The determistic version of the Glimm scheme. Commun. Math. Phys. 57, 135–148 (1977)

    Article  MATH  Google Scholar 

  54. A. Martin, M. Möller, S. Moritz, Mixed integer models for the stationary case of gas network optimization. Math. Program. Ser. B 105, 563–582 (2006)

    Article  MATH  Google Scholar 

  55. V. Milisic, Stability and convergence of discrete kinetic approximations to an initial-boundary value problem for conservation laws. Proc. Am. Math. Soc. 97, 595–633 (2004)

    MATH  MathSciNet  Google Scholar 

  56. L. Pareschi, G. Russo, Implicit-explicit Runge–Kutta schemes for stiff systems of differential equations. in Recent Trends in Numerical Analysis, ed. by T. Brugano, vol 3 (Nova Science, Commack, 2000) pp. 269–284

    Google Scholar 

  57. L. Pareschi, G. Russo, Asymptotically SSP schemes for hyperbolic systems with stiff relaxation, in Hyperbolic problems: Theory, Numerics, Applications: Proceedings of the Ninth International Conference on Hyperbolic Problems Held in Caltech, Pasadena (2003) pp. 241–255

    Google Scholar 

  58. L. Pareschi, G. Russo, Implicit-explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MATH  MathSciNet  Google Scholar 

  59. B. Perthame, Kinetic Formulation of Conservation Laws. Oxford Lecture Series in Mathematics and its applications, vol. 21 (Oxford University Press, Oxford, 2002)

    Google Scholar 

  60. S. Schochet, Glimm’s scheme for systems with almost-planar interactions. Commun. Partial Differ. Equ. 16, 1423–1440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  61. M. Seaïd, High-resolution relaxation scheme for the two-dimensional riemann problems in gas dynamics. Numer. Methods Partial Differ. Equ. 22, 397–413 (2006)

    Article  MATH  Google Scholar 

  62. D. Serre, Systems of Conservation Laws I (Cambridge University Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  63. J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1983)

    Book  MATH  Google Scholar 

  64. G. Sod, Numerical Methods for Fluid Dynamics (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  65. M. Steinbach, On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203, 345–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  67. E. Tadmor, Approximate solutions of nonlinear conservation laws, in Advanced Numerical Approximations of Nonlinear Hyperbolic Equations, ed. by A. Quarteroni, Lecture Notes in Mathematics, vol 1697 (Springer, Berlin, 1998)

    Google Scholar 

  68. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (Springer, Berlin, 2009)

    Book  Google Scholar 

  69. B. van Leer, Towards the ultimate conservative difference schemes. V. A second order sequel to Godunov method. J. Comput. Phys. 32, 101–136 (1979)

    Google Scholar 

  70. F.M. White, Fluid Mechanics (McGraw-Hill, New York, 2002)

    Google Scholar 

  71. G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974)

    MATH  Google Scholar 

  72. P. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comp. Phys. 54, 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  73. J. Zhou, M.A. Adewumi, Simulation of transients in natural gas pipelines using hybrid TVD schemes. Int. J. Numer. Methods Fluids 32, 407–437 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewer for very constructive comments which have tremendously improved the quality of this chapter. The author would also like to thank the following organisations which funded some of the research presented in this chapter as well as the organisation of the workshop where the topic was presented: International Centre for Pure and Applied Mathematics (CIMPA), International Mathematics Union (IMU), London Mathematical Society—African Mathematics Millennium Science Initiative (LMS-AMMSI), International Centre for Theoretical Physics (ICTP), African Institute of Mathematical Sciences (AIMS), the National Research Foundation (NRF) of South Africa (NRF), University of KwaZulu-Natal, Witwatersrand and Stellenbosch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mapundi Kondwani Banda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banda, M.K. (2015). Nonlinear Hyperbolic Systems of Conservation Laws and Related Applications. In: Banasiak, J., Mokhtar-Kharroubi, M. (eds) Evolutionary Equations with Applications in Natural Sciences. Lecture Notes in Mathematics, vol 2126. Springer, Cham. https://doi.org/10.1007/978-3-319-11322-7_9

Download citation

Publish with us

Policies and ethics