Skip to main content

Phytoremediation Using Rhizobia

  • Chapter
  • First Online:

Abstract

The use of plants to clean up polluted sites, named phytoremediation, is an attractive methodology for the cleanup of metals and other soil contaminants. While some plants can hyperaccumulate metals from the environment or break down diverse organic contaminants, they typically do not produce a large amount of biomass, and many other plants are unable to grow under such conditions. Legumes are well known for their importance as both animal and human foods and for their role in maintaining soil fertility; they are also of great interest in sustainable agricultural systems. In this context, the use of rhizobia that form a symbiotic relationship with legumes to increase the productivity and yield of legume plants in metal-contaminated soils is a promising approach to metal phytoremediation. Thus, selection of particular rhizobial strains with some degree of tolerance to metals and possessing various plant growth-promoting activities is imperative. Recent studies have indicated that metal-resistant rhizobia possessing plant growth-promoting traits, including nitrogen fixation, phosphorus solubilization, phytohormone synthesis, siderophore production and release, and synthesis of ACC deaminase may facilitate legume growth while lessening metal toxicity. This chapter discusses the possible application of rhizobia, as symbiotic nitrogen fixers and plant growth-promoting bacteria, which may improve the productivity and yield of legumes in metal-contaminated soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abeles F, Morgan P, Saltveit M (1992) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Ahemad M, Khan MS (2010) Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot 29:325–329

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    CAS  PubMed  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319

    CAS  Google Scholar 

  • Ahmed FRS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 283:33–41

    CAS  Google Scholar 

  • Akhtar N, Arshad I, Shakir MA, Qureshi MA, Sehrish J, Ali L (2013) Co-inoculation with Rhizobium and Bacillus sp. to improve the phosphorus availability and yield of wheat (Triticum aestivum L.). J Anim Plant Sci 23:190–197

    CAS  Google Scholar 

  • Akimova GP, Sokolova MG (2012) Cytokinin content during early stages of legume-rhizobial symbiosis and effect of hypothermia. Russ J Plant Physiol 59:656–661

    CAS  Google Scholar 

  • Alexander E, Pham D, Steck TR (1999) The viable but nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl Environ Microbiol 65:3754–3756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Garni SMS (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afri J Biotechnol 5:133–142

    CAS  Google Scholar 

  • Ali B, Hayat S, Hasan SA, Ahmad A (2008) IAA and 4-Cl-IAA increases the growth and nitrogen fixation in mung bean. Commun Soil Sci Plant Anal 39:2695–2705

    CAS  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    CAS  Google Scholar 

  • Andrade SAL, Abreu CA, de Abreu MF, Silveira APD (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26:123–131

    Google Scholar 

  • Andrade S, Silveira A, Mazzafera P (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Sci Total Environ 208:5381–5391

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    CAS  Google Scholar 

  • Arruda L, Beneduzi A, Martins A, Lisboa B, Lopes C, Bertolo F, Passaglia LMP, Vargas LK (2013) Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Appl Soil Ecol 63:15–22

    Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    CAS  Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (N15) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Google Scholar 

  • Badenochjones J, Rolfe BG, Letham DS (1983) Phytohormones, Rhizobium mutants, and nodulation in legumes. 3. Auxin metabolism in effective and ineffective pea root nodules. Plant Physiol 73:347–352

    CAS  Google Scholar 

  • Balestrasse KB, Gallego SM, Tomaro ML (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant Soil 262:373–381

    CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fert Soils 45:405–413

    Google Scholar 

  • Barnawal D, Maji D, Bharti N, Chanotiya C, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul. doi:10.1007/s00344-013-9347-3

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (Plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    CAS  Google Scholar 

  • Bauer P, Ratet P, Crespi MD, Schultze M, Kondorosi A (1996) Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant J 10:91–105

    CAS  Google Scholar 

  • Becerra-Castro C, Susan Kidd P, Prieto-Fernandez A, Weyens N, Acea M-J, Vangronsveld J (2011) Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterisation. Plant Soil 340:413–433

    CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bibi M, Hussain M (2005) Effect of copper and lead on photosynthesis and plant pigments in black gram Vigna mungo (L.) Hepper. Bull Environ Contam Toxicol 74:1126–1133

    CAS  PubMed  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    CAS  PubMed  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    CAS  PubMed  Google Scholar 

  • Bose S, Bhattacharyya AK (2008) Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    CAS  PubMed  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    PubMed  Google Scholar 

  • Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640

    CAS  Google Scholar 

  • Brown JP (1974) Reaction of 1,2-benzodithiole-3-thione with ethylene diamines and trimethylene-diamines. J Chem Soc Perkin Trans 1:869–870

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    CAS  PubMed  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    CAS  PubMed  Google Scholar 

  • Cardón DL, Montes Villafan S, Rodriguez Tovar A, Perez Jimenez S, Guerrero Zuniga LA, Amezcua Allieri MA, Perez NO, Rodriguez Dorantes A (2010) Growth response and heavy metals tolerance of Axonopus affinis, inoculated with plant growth-promoting rhizobacteria. Afr J Biotechnol 9:8772–8782

    Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, Lopez R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    CAS  Google Scholar 

  • Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P, Gerbaud A, Robaglia C, Somerville S, Nussaume L (2003) Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188

    CAS  PubMed  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1993) Growth-stimulation for corn and cos lettuce using phosphorus-solubilizing microorganisms. Can J Microbiol 39:941–947

    Google Scholar 

  • Chaintreuil C, Rigault F, Moulin L, Jaffre T, Fardoux J, Giraud E, Dreyfus B, Bailly X (2007) Nickel resistance determinants in Bradyrhizobium strains from nodules of the endemic New Caledonia legume Serianthes calycina. Appl Environ Microbiol 73:8018–8022

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:124–130

    Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE, Rietz E, Sauerbeck DR (1993) Enumeration of indigenous Rhizobium leguminosarum biovar Trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biol Biochem 25:301–309

    CAS  Google Scholar 

  • Chaudri AM, Lawlor K, Preston S, Paton GI, Killham K, McGrath SP (2000) Response of a rhizobium based luminescence biosensor to Zn and Cu in soil solutions from sewage sludge treated soils. Soil Biol Biochem 32:383–388

    CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804

    CAS  PubMed  Google Scholar 

  • Chen BD, Zhu YG, Duan J, Xiao XY, Smith S (2007) Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380

    CAS  PubMed  Google Scholar 

  • Chen W-M, Wu C-H, James EK, Chang J-S (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    CAS  PubMed  Google Scholar 

  • Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C, Liu C, Zheng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

    Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    CAS  PubMed  Google Scholar 

  • Conforte VP, Echeverria M, Sanchez C, Ugalde RA, Menendez AB, Lepek VC (2010) Engineered ACC deaminase-expressing free-living cells of Mesorhizobium loti show increased nodulation efficiency and competitiveness on Lotus spp. J Gen Appl Microbiol 56:331–338

    CAS  PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Bena G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    PubMed  Google Scholar 

  • Csukasi F, Merchante C, Valpuesta V (2009) Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 4:1293–1304

    CAS  PubMed  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    CAS  PubMed  Google Scholar 

  • Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    CAS  PubMed  Google Scholar 

  • Dazzo F, Yanni Y (2006) The natural rhizobium-cereal crop association as an example of plant-bacterial interaction. In: Uphoff N, Ball A, Fernandes E et al (eds) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 109–127

    Google Scholar 

  • de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Google Scholar 

  • Dehio C, Debruijn FJ (1992) The early nodulin gene SRENOD2 from Sesbania rostrata is inducible by cytokinin. Plant J 2:117–128

    CAS  PubMed  Google Scholar 

  • Del Rio M, Font R, Almela C, Velez D, Montoro R, Bailon AD (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcollar mine. J Biotechnol 98:125–137

    PubMed  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  • Dhingra HR, Varghese TM (1985) Effect of growth-regulators on the In vitro germination and tube growth of maize (Zea mays L) pollen from plants raised under sodium-chloride salinity. New Phytol 100:563–569

    CAS  Google Scholar 

  • Di Gregorio S, Lampis S, Malorgio F, Petruzzelli G, Pezzarossa B, Vallini G (2006) Brassica juncea can improve selenite and selenate abatement in selenium contaminated soils through the aid of its rhizospheric bacterial population. Plant Soil 285:233–244

    CAS  Google Scholar 

  • Dimkpa C, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    CAS  Google Scholar 

  • Ding Y, Oldroyd GED (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    CAS  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leucaena leucocephala. Water Res 37:441–449

    CAS  PubMed  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:423–436

    CAS  PubMed  Google Scholar 

  • Duodu S, Bhuvaneswari TV, Stokkermans TJW, Peters NK (1999) A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant Microbe Interact 12:1082–1089

    CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Google Scholar 

  • Fang YW, Hirsch AM (1998) Studying early nodulin gene ENOD40 expression and induction by nodulation factor and cytokinin in transgenic alfalfa. Plant Physiol 116:53–68

    PubMed Central  CAS  PubMed  Google Scholar 

  • FAO (2009) How to feed the World in 2050. Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43

    CAS  PubMed  Google Scholar 

  • Ferguson F, Lessenger J (2006) Plant growth regulators. In: Lessenger J (ed) Agricultural medicine. Springer, New York, pp 156–166

    Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signaling interactions during nodule development. J Plant Growth Regul 22:47–72

    CAS  Google Scholar 

  • Fernandez-Falcon M, Borges AA, Borges-Perez A (2003) Induced resistance to Fusarium wilt of banana by exogenous applications of indoleacetic acid. Phytoprotection 84:149–153

    CAS  Google Scholar 

  • Fester T, Sawers R (2011) Progress and challenges in agricultural applications of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 30:459–470

    Google Scholar 

  • Figueira E, Lima IG, Pereira SIA (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 51:7–14

    CAS  PubMed  Google Scholar 

  • Frankenberger JWT, Arshad M (1995) Microbial synthesis of auxins. In: Frankenberger WT, Arshad M (eds) Phytohormones in soils. Marcel Dekker Inc, New York, pp 35–71

    Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp Tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    CAS  Google Scholar 

  • Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    CAS  PubMed  Google Scholar 

  • Fürnkranz M, Adam E, Müller H, Grube M, Huss H, Winkler J, Berg G (2012) Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 134:509–519

    Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PLoS One 7(3):e33977

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh S, Basu PS (2006) Production and metabolism of indole-acetic-acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161:362–366

    CAS  PubMed  Google Scholar 

  • Giller KE, McGrath SP, Hirsch PR (1989) Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy-metals is due to survival of only ineffective Rhizobium. Soil Biol Biochem 21:841–848

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    CAS  PubMed  Google Scholar 

  • Glick BR (2004) Changes in plant growth and development by rhizosphere bacteria that modify plant ethylene levels. In: Nicola S, Nowak J, Vavrina CS (eds) Issues and advances in transplant production and stand establishment research. Acta Hortic, 26th International horticultural congress; international society horticultural science, Toronto, 631:265–273

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:15. Article ID 963401

    Google Scholar 

  • Glick BR, Stearns JC (2011) Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. Int J Phytoremediation 13:4–16

    PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, UK

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  • Gong M, Tang M, Chen H, Zhang Q, Xu H, Zheng C (2012) Effects of Glomus mosseae and rhizobium on the growth of black locust seedlings and the quality of weathered soft rock soils in the Loess Plateau, China. Ann Microbiol 62:1579–1586

    CAS  Google Scholar 

  • González-Guerrero M, Melville LH, Ferrol N, Lott JN, Azcón-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110

    PubMed  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon LJ, Finlayson CM, Falkenmark M (2010) Managing water in agriculture for food production and other ecosystem services. Agr Water Manag 97:512–519

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graham PH, Viteri SE, Mackie F, Vargas AT, Palacios A (1982) Variation in acid soil tolerance among strains of Rhizobium phaseoli. Field Crops Res 5:121–128

    Google Scholar 

  • Grčman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  • Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172:3298–3303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gul B, Khan MA, Weber DJ (2000) Alleviation of salinity and dark-enforced dormancy in Allenrolfea occidentalis seeds under various thermoperiods. Aust J Bot 48:745–752

    Google Scholar 

  • Gulnaz A, Iqbal J, Azam F (1999) Seed treatment with growth regulators and crop productivity. II. Response of critical growth stages of wheat (Triticum aestivum L.) under salinity stress. Cereal Res Commun 27:419–426

    CAS  Google Scholar 

  • Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Hall J, Soole K, Bentham R (2011) Hydrocarbon phytoremediation in the family Fabacea—a review. Int J Phytoremediation 13(4):317–332

    CAS  PubMed  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth-promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299

    CAS  PubMed  Google Scholar 

  • Hao X, Xie P, Johnstone L, Miller SJ, Rensing C, Wei G (2012) Genome sequence and mutational analysis of plant growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl Environ Microbiol 78:5384–5394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    CAS  PubMed  Google Scholar 

  • Heckmann AB, Sandal N, Bek AS, Madsen LH, Jurkiewicz A, Nielsen MW, Tirichine L, Stougaard J (2011) Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant Microbe Interact 24:1385–1395

    CAS  PubMed  Google Scholar 

  • Hilder RC, Kong X (2010) Chemistry and biology of siderophores. Mol Plant Microbe Interact 4:5–13

    Google Scholar 

  • Hirsch AM, Fang YW (1994) Plant hormones and nodulation—what’s the connection. Plant Mol Biol 26:5–9

    CAS  PubMed  Google Scholar 

  • Hirsch PR, Jones MJ, McGrath SP, Giller KE (1993) Heavy-metals from past applications of sewage-sludge decrease the genetic diversity of Rhizobium leguminosarum biovar Trifolii populations. Soil Biol Biochem 25:1485–1490

    Google Scholar 

  • Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30

    PubMed  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hungria M, Stacey G (1997) Molecular signals exchanged between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biol Biochem 29:819–830

    CAS  Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Google Scholar 

  • Hunter WJ (1989) Indole-3-acetic-acid production by bacteroids from soybean root-nodules. Physiol Plant 76:31–36

    CAS  Google Scholar 

  • Huo W, Zhuang C-H, Cao Y, Pu M, Yao H, Lou L-Q, Cai Q-S (2012) Paclobutrazol and plant-growth promoting bacterial endophyte Pantoea sp enhance copper tolerance of guinea grass (Panicum maximum) in hydroponic culture. Acta Physiol Plant 34:139–150

    CAS  Google Scholar 

  • Hussain A, Hasnain S (2011) Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J Microbiol Biotechnol 27:2645–2654

    CAS  Google Scholar 

  • Ibekwe AM, Angle JS, Chaney RL, vanBerkum P (1997) Enumeration and N2 fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agric Ecosyst Environ 61:103–111

    CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    CAS  PubMed  Google Scholar 

  • Imsande J (1998) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plant 103:139–144

    CAS  Google Scholar 

  • Itai C, Richmond A, Vaadia Y (1968) Role of root cytokinins during water and salinity stress. Isr J Bot 17:187–195

    CAS  Google Scholar 

  • Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soybean and lentil. Int J Phytoremediation 4:205–221

    CAS  Google Scholar 

  • Kabar K (1987) Alleviation of salinity stress by plant growth regulators on seed-germination. J Plant Physiol 128:179–183

    CAS  Google Scholar 

  • Kampert M, Strzelczyk E, Pokojska A (1975) Production of auxins by bacteria isolated from roots of pine seedlings (Pinus silvestris L). Acta Microbiol Pol 7:135–143

    CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    PubMed  Google Scholar 

  • Kanika, Dogra T, Lata (2010) Biochemical and molecular characterization of a rhizobitoxine-producing Bradyrhizobium from pigeon pea plants. Folia Microbiol 55:233–238

    CAS  Google Scholar 

  • Khan MA, Weber DJ (1986) Factors influencing seed-germination in Salicornia pacifica var utahensis. Am J Bot 73:1163–1167

    Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Indian J Bot Soc 81:255–263

    Google Scholar 

  • Khan MA, Gul B, Weber DJ (2004) Action of plant growth regulators and salinity on seed germination of Ceratoides lanata. Can J Bot 82:37–42

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–44

    Google Scholar 

  • Kulaeva ON, Kusnetsov VV (2002) Recent advances and horizons of the cytokinin studying. Russ J Plant Physiol 49:561–574

    CAS  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    CAS  Google Scholar 

  • Lee KH, Larue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum cv Sparkle. Plant Physiol 100:1759–1763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Wei D, Shen M, Zhou Z (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Google Scholar 

  • Liu WX, Liu JW, Wu MZ, Li Y, Zhao Y, Li SR (2009) Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull Environ Contam Toxicol 82:343–347

    CAS  PubMed  Google Scholar 

  • Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot 104:277–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Long X, Chen X, Chen Y, Woon-Chung WJ, Wei Z, Wu Q (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27:1197–1207

    CAS  Google Scholar 

  • Lopareva A, Goncharova N (2007) Plant-microbe symbiosis for bioremediation of heavy metal contaminated soil: perspectives for Belarus. In: Hull RN et al (eds) Strategies to enhance environmental security in transition countries. Springer, Netherlands, pp 401–414

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobacteria, Annu Rev Microbiol, 63:541–556

    Google Scholar 

  • Luo S, Chen L, Chen J, Xiao X, Xu T, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng G (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    CAS  PubMed  Google Scholar 

  • Ma WB, Penrose DM, Glick BR (2002) Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Can J Microbiol 48:947–954

    CAS  PubMed  Google Scholar 

  • Ma WB, Guinel FC, Glick BR (2003a) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma WB, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003b) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Anton Leeuw Int J G 83:285–291

    CAS  Google Scholar 

  • Ma WB, Charles TC, Glick BR (2004) PV expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 196:230–237

    Google Scholar 

  • Malcova R, Vosatka M, Gryndler M (2003) Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Appl Soil Ecol 23:55–67

    Google Scholar 

  • Mamaril JC, Paner ET, Alpante BM (1997) Biosorption and desorption studies of chromium (III) by free and immobilized Rhizobium (BJV r 12) cell biomass. Biodegradation 8(4):275–285

    CAS  Google Scholar 

  • Mandal SM, Pati BR, Das AK, Ghosh AK (2008) Characterization of a symbiotically effective rhizobium resistant to arsenic: isolated from the root nodules of Vigna mungo (L.) Hepper grown in an arsenic-contaminated field. J Gen Appl Microbiol 54:93–99

    CAS  PubMed  Google Scholar 

  • Mañero FJG, Acero N, Lucas JA, Probanza A (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L) Gaertn) growth. 2. Characterisation and biological assays of metabolites from growth promoting and growth inhibiting bacteria. Plant Soil 182:67–74

    Google Scholar 

  • Martensson AM, Witter E (1990) Influence of various soil amendments on nitrogen fixing soil microorganisms in a long-term field experiment, with special reference to sewage-sludge. Soil Biol Biochem 22:977–982

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    CAS  Google Scholar 

  • McDonnell L, Plett JM, Andersson-Gunneras S, Kozela C, Dugardeyn J, Van Der Straeten D, Glick BR, Sundberg B, Regan S (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Plant 136:94–109

    CAS  PubMed  Google Scholar 

  • McGrath SP, Brookes PC, Giller KE (1988) Effects of potentially toxic metals in soil derived from pasta applications of sewage-sludge on nitrogen fixation by Trifolium repens L. Soil Biol Biochem 20:415–424

    CAS  Google Scholar 

  • McKay IA, Djordjevic MA (1993) Production and excretion of nod metabolites by Rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl Environ Microbiol 59:3385–3392

    PubMed Central  CAS  PubMed  Google Scholar 

  • McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382

    CAS  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51(3):326–335

    PubMed  Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144:51–61

    CAS  PubMed  Google Scholar 

  • Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J et al (2007) An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction. Plant Cell 19:1221–1234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minamisawa K, Onodera S, Tanimura Y, Kobayashi N, Yuhashi KI, Kubota M (1997) Preferential nodulation of Glycine max, Glycine soja and Macroptilium atropurpureum by two Bradyrhizobium species japonicum and elkanii. FEMS Microbiol Ecol 24:49–56

    CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009a) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Tillage Res 104:48–55

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2009b) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res 103:282–290

    Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. Biocontrol 56:811–822

    Google Scholar 

  • Muratova AY, Turkovskaya OV, Hubner T, Kuschk P (2003) Studies of the efficacy of alfalfa and reed in the phytoremediation of hydrocarbon-polluted soil. Appl Biochem Microbiol 39:599–605

    CAS  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    CAS  PubMed  Google Scholar 

  • Nandwal AS, Kukreja S, Kumar N, Sharma PK, Jain M, Mann A, Singh S (2007) Plant water, status, ethylene evolution, N(2)-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. J Plant Physiol 164:1161–1169

    CAS  PubMed  Google Scholar 

  • Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2012a) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    CAS  Google Scholar 

  • Nascimento FX, Brígido C, Glick BR, Oliveira S (2012b) ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol Lett 336:26–37

    CAS  PubMed  Google Scholar 

  • Nascimento FX, Brígido C, Glick BR, Oliveira S, Alho L (2012c) Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Lett Appl Microbiol 55:15–21

    CAS  PubMed  Google Scholar 

  • Nogueira MA, Nehls U, Hampp R, Poralla K, Cardoso EJBN (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298:273–284

    CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of delta-aminolevulinic acid. Biometals 20:841–851

    CAS  PubMed  Google Scholar 

  • Nukui N, Ezura H, Yuhashi KI, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    CAS  PubMed  Google Scholar 

  • Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–435

    CAS  PubMed  Google Scholar 

  • Nukui N, Minamisawa K, Ayabe S-I, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylic acid deaminase gene requires symbiotic nitrogen-fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969

    PubMed Central  CAS  PubMed  Google Scholar 

  • Obbard JP, Jones KC (1993) The effect of heavy-metals on dinitrogen fixation by rhizobium white clover in a range of long-term sewage-sludge amended and metal-contaminated soils. Environ Pollut 79:105–112

    CAS  PubMed  Google Scholar 

  • Okazaki S, Yuhashi KI, Minamisawa K (2003) Quantitative and time-course evaluation of nodulation competitiveness of rhizobitoxine-producing Bradyrhizobium elkanii. FEMS Microbiol Ecol 45:155–160

    CAS  PubMed  Google Scholar 

  • Okazaki S, Sugawara M, Minamisawa K (2004) Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizobitoxine biosynthesis. Appl Environ Microbiol 70:535–541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oldroyd GED (2007) Nodules and hormones. Science 315(5808):52–53

    CAS  PubMed  Google Scholar 

  • Oldroyd GED, Downie JM (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    CAS  PubMed  Google Scholar 

  • Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    PubMed Central  CAS  PubMed  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Google Scholar 

  • Orlowska E, Przybyłowicz W, Orlowski D, Turnau K, M-P J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    CAS  PubMed  Google Scholar 

  • Owens LD, Williams T, Thompson JF, Pitcher RG (1972) Structure of rhizobitoxine, an antimetabolic ether amino-acid from Rhizobium japonicum. J Chem Soc Chem Commun 12:714

    Google Scholar 

  • Pajuelo E, Dary M, Palomares AJ, Rodriguez-Llorente ID, Carrasco JA, Chamber MA (2008a) Biorhizoremediation of heavy metals toxicity using Rhizobium-legume symbioses. In: Dakota FD, Chimphango ABM, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture, vol 42. Springer, Netherlands, pp 101–104

    Google Scholar 

  • Pajuelo E, Rodriguez-Llorente ID, Dary M, Palomares AJ (2008b) Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environ Pollut 154:203–211

    CAS  PubMed  Google Scholar 

  • Parker MA, Peters NK (2001) Rhizobitoxine production and symbiotic compatibility of Bradyrhizobium from Asian and North American lineages of Amphicarpaea. Can J Microbiol 47:889–894

    CAS  PubMed  Google Scholar 

  • Pastor J, Hernandez AJ, Prieto N, Fernandez-Pascual M (2003) Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn. J Plant Physiol 160:1457–1465

    CAS  PubMed  Google Scholar 

  • Patrick B, Antonin L, Servane L-L, Deleu C, Le Deunff E (2009) Ethylene modifies architecture of root system in response to stomatal opening and water allocation changes between root and shoot. Plant Signal Behav 4:44–46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis on indole-3-acetic acid. Can J Microbiol 42:207–220

    CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paudyal SP, Aryal RR, Chauhan SVS, Maheshwari DK (2007) Effects of heavy metals on growth of rhizobium strains and symbiotic efficiency of two species of tropical legumes. Sci World 5:27–32

    Google Scholar 

  • Pavlova ZB, Lutova LA (2000) Nodulation as a model for studying differentiation in higher plants. Russ J Genet 36:975–988

    CAS  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG, Carrillo G (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–301

    CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, de la Rosa G, Gonzalez JH, Gardea-Torresdey JL (2004) Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685

    CAS  Google Scholar 

  • Pereira SIA, Lima AIG, de Figueira EMPA (2006a) Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils. Microb Ecol 52:176–186

    CAS  PubMed  Google Scholar 

  • Pereira SIA, Lima AIG, Figueira EMAP (2006b) Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy-metal contamination: effects on protein expression. Appl Soil Ecol 33:286–293

    Google Scholar 

  • Pertry I, Vaclavikova K, Depuydt S, Galuszka P, Spichal L, Temmerman W, Stes E, Schmuelling T, Kakimoto T, Van Montagu MCE, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci U S A 106:929–934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59:1688–1690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    CAS  PubMed  Google Scholar 

  • Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99(9):3491–3498

    CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    CAS  PubMed  Google Scholar 

  • Ratcliff WC, Denison RF (2009) Rhizobitoxine producers gain more poly-3-hydroxybutyrate in symbiosis than do competing rhizobia, but reduce plant growth. ISME J 3:870–872

    CAS  PubMed  Google Scholar 

  • Ratcliff WC, Kadam SV, Denison RF (2008) Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol 65:391–399

    CAS  PubMed  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    CAS  PubMed  Google Scholar 

  • Reichman SM (2007) The potential use of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Google Scholar 

  • Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    CAS  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martinez-Molina E, Velazquez E (2006) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil 287:23–33

    CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  PubMed  Google Scholar 

  • Rogers NJ, Carson KC, Glenn AR, Dilworth MJ, Hughes MN, Poole RK (2001) Alleviation of aluminum toxicity to Rhizobium leguminosarum bv. viciae by the hydroxamate siderophore vicibactin. Biometals 14(1):59–66

    CAS  PubMed  Google Scholar 

  • Romanov GA (2009) How do cytokinins affect the cell? Russ J Plant Physiol 56:268–290

    CAS  Google Scholar 

  • Roy N, Chakrabartty PK (2000) Effect of aluminum on the production of siderophore by Rhizobium sp (Cicer arietinum). Curr Microbiol 41:5–10

    CAS  PubMed  Google Scholar 

  • Ruan XA, Peters NK (1992) Isolation and characterization of rhizobitoxine mutants of Bradyrhizobium japonicum. J Bacteriol 174:3467–3473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  PubMed  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    CAS  PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    CAS  PubMed  Google Scholar 

  • Scheublin TR, van der Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol 172:732–738

    PubMed  Google Scholar 

  • Schlindwein G, Vargas LK, Lisboa BB, Azambuja AC, Granada CE, Gabiatti NC, Prates F, Stumpf R (2008) Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Cienc Rural 38:658–664

    Google Scholar 

  • Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol 119:951–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero E (2002) Advances in rhizobium research. Crit Rev Plant Sci 21:323–378

    CAS  Google Scholar 

  • Shahab S, Ahmed N, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4:1312–1316

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006a) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    CAS  PubMed  Google Scholar 

  • Shaharoona B, Bibi R, Arshad M, Zahir ZA, Zia Ul H (2006b) 1-Aminocylopropane-1-carboxylate (ACC)deaminase rhizobacteria extenuates ACC-induced classical triple response in etiolated pea seedlings. Pak J Bot 38:1491–1499

    Google Scholar 

  • Shahzad SM, Khalid A, Arshad M, Tahir J, Mahmood T (2010) Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. Eur J Soil Biol 46:342–347

    CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    CAS  Google Scholar 

  • Sharaf EF, Farrag AA (2004) Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici. Pol J Microbiol 53:111–116

    CAS  PubMed  Google Scholar 

  • Sheng X, Chen X, He L (2008) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrosteman Bunge. Int Biodeterior Biodegrad 62:88–95

    CAS  Google Scholar 

  • Shilev SI, Ruso J, Puig A, Benlloch M, Jorrin J, Sancho E (2001) Rhizospheric bacteria promote sunflower (Helianthus annuus L.) plant growth and tolerance to heavy metals. Minerva Biotechnol 13:37–39

    Google Scholar 

  • Solano B, Maicas J, Mañero FJG (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinhein, Germany, pp 41–52

    Google Scholar 

  • Soto MJ, Domínguez-Ferreras A, Perez-Mendoza D, Sanjuan J, Olivares J (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388

    CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4)

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    CAS  PubMed  Google Scholar 

  • Spiertz JHJ (2010) Nitrogen, sustainable agriculture and food security. A review. Agron Sustain Dev 30:43–55

    CAS  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    CAS  PubMed  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    PubMed Central  PubMed  Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388

    CAS  PubMed  Google Scholar 

  • Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD et al (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    CAS  PubMed  Google Scholar 

  • Taurian T, Soledad AM, Luduena LM, Angelini JG, Munoz V, Valetti L, Fabra A (2013) Effects of single and co-inoculation with native phosphate solubilising strain Pantoea sp J49 and the symbiotic nitrogen fixing bacterium Bradyrhizobium sp SEMIA 6144 on peanut (Arachis hypogaea L.) growth. Symbiosis 59:77–85

    Google Scholar 

  • Teng Y, Shen Y, Luo Y, Sun X, Sun M, Fu D, Li Z, Christie P (2011) Influence of Rhizobium meliloti on phytoremediation of polycyclic aromatic hydrocarbons by alfalfa in an aged contaminated soil. J Hazard Mater 186:1271–1276

    CAS  PubMed  Google Scholar 

  • Tirichine L, James EK, Sandal N, Stougaard J (2006) Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol Plant Microbe Interact 19:373–382

    CAS  PubMed  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    CAS  PubMed  Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp strain BL3 in Rhizobium sp strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    CAS  PubMed  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    CAS  PubMed  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Klimova SY, Shestakov AI, Botina SG, Netrusov AI (2007) Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Arch Microbiol 188:655–664

    CAS  PubMed  Google Scholar 

  • Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N et al (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Beneduzi A, Pereira Passaglia LM (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do Sul state. Rev Bras Cienc Solo 33(5):1227–12357

    Google Scholar 

  • Verma DPS, Long S (1983) The molecular biology of rhizobium-legume symbiosis. Int Rev Cytol Suppl 14:211–245

    CAS  Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Maure L, Escarre J, Bena G, Brunel B, Cleyet-Marel J-C (2009) Mesorhizobium metallidurans sp nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855

    CAS  PubMed  Google Scholar 

  • Vivas A, Voros A, Biro B, Barea JM, Ruiz-Lozano JM, Azcon R (2003) Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a Cd-adapted strain of Brevibacillus sp in improving plant tolerance to Cd contamination. Appl Soil Ecol 24:177–186

    Google Scholar 

  • Vivas A, Biro B, Nemeth T, Barea JM, Azcon R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704

    CAS  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    CAS  PubMed  Google Scholar 

  • Wang JR, Zhao FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HB, Wong MH, Lan CY, Baker AJM, Qin YR, Shu WS, Chen GZ, Ye ZH (2007) Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut 145:225–233

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91:117–124

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Exp Agr 47:712–720

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27:145–153

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Chromium reduction, plant growth-promoting potentials, and metal solubilizatrion by Bacillus sp. isolated from alluvial soil. Curr Microbiol 54:237–243

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007d) Effect of metal tolerant plant growth promoting Bradyrhizobium sp (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008c) Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28:449–455

    Google Scholar 

  • Wani PA, Khan S, Zaidi A (2008d) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    CAS  PubMed  Google Scholar 

  • Wani PA, Zaidi A, Khan MS (2009) Chromium reducing and plant growth-promoting potential of Mesorhizobium species under chromium stress. Bioremediation J 13:121–129

    CAS  Google Scholar 

  • Weir (2012) The current taxonomy of rhizobia. NZ Rhizobia website. http://www.rhizobia.co.nz/taxonomy/rhizobia. Accessed 10 April 2012

  • Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

  • Wheeler CT, Henson IE, McLaughlin ME (1979) Hormones in plants bearing actinomycete nodules. Bot Gaz 140:S52–S57

    Google Scholar 

  • Wood M, Cooper JE (1988) Acidity, aluminum and multiplication of Rhizobium trifolii possible mechanisms of aluminum toxicity. Soil Biol Biochem 20:95–99

    CAS  Google Scholar 

  • Xie ZP, Staehelin C, Wiemken A, Boller T (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J Plant Physiol 149:690–694

    CAS  Google Scholar 

  • Xiong K, Fuhrmann JJ (1996) Soybean response to nodulation by wild-type and an isogenic Bradyrhizobium elkanii mutant lacking rhizobitoxine production. Crop Sci 36:1267–1271

    Google Scholar 

  • Yasmeen T, Hameed S, Tariq M, Ali S (2012) Significance of arbuscular mycorrhizal and bacterial symbionts in a tripartite association with Vigna radiata. Acta Physiol Plant 34:1519–1528

    CAS  Google Scholar 

  • Yasuta T, Satoh S, Minamisawa K (1999) New assay for rhizobitoxine based on inhibition of 1-aminocyclopropane-1-carboxylate synthase. Appl Environ Microbiol 65:849–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yasuta T, Okazaki S, Mitsui H, Yuhashi KI, Ezura H, Minamisawa K (2001) DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii. Appl Environ Microbiol 67:4999–5009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Younis M (2007) Responses of Lablab purpureus-rhizobium symbiosis to heavy metals in pot and field experiments. World J Agr Sci 3:111–122

    Google Scholar 

  • Yuhashi KI, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fert Soils 47:457–465

    CAS  Google Scholar 

  • Zahran HH (2006) Nitrogen (N2) fixation in vegetable legumes: biotechnological perspectives. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture, vol 1. Science Publishers, Inc, Enfield, USA, pp 49–82

    Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    CAS  PubMed  Google Scholar 

  • Zhang F, Smith DL (1996) Genistein accumulation in soybean (Glycine max L Merr) root systems under suboptimal root zone temperatures. J Exp Bot 47:785–792

    CAS  Google Scholar 

  • Zhang Y, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725

    CAS  PubMed  Google Scholar 

  • Zheng ZW, Fang W, Lee HY, Yang ZY (2005) Responses of Azorhizobium caulinodans to cadmium stress. FEMS Microbiol Ecol 54:455–461

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clarisse Brígido Ph.D. or Bernard R. Glick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brígido, C., Glick, B.R. (2015). Phytoremediation Using Rhizobia. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10969-5_9

Download citation

Publish with us

Policies and ethics