Skip to main content

Abstract

In principle, the voltammetry of immobilized droplets is in many respects very similar to the voltammetry of immobilized microparticles. However, the fluidity of droplets in contrast to the rigidity of solids leads to specific features which have to be discussed before the details of electrochemical studies can be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Young Th (1805) Philos Trans 65–87

  2. 2.

    Ivošević N, Žutić V (1998) Langmuir 14:231–234

  3. 3.

    Hellberg D, Scholz F, Schauer F, Weitschies W (2002) Electrochem Commun 4:305–309

  4. 4.

    Marangoni CGM (1871) Ann Phys Chem (Poggendorf) 143:337–354

  5. 5.

    Marcus Y (1997) Ion properties. Marcel Dekker, New York

  6. 6.

    Richtol HH, Fitzgerald EA Jr, Wuelfing P Jr (1971) J Phys Chem. 75: 2737–2741; Avdievich NI, Jeevariajan AS, Forbes MDE (1996) J Phys Chem 100: 5334–5342

  7. 7.

    Testa B, van de Waterbeemd H, Folkers G, Gay R (2001) Pharmacokinetic optimization in drug research. Wiley-VCH, Weinheim

  8. 8.

    Girault HHJ, Schiffrin DJ (1989) Electrochemistry of liquid-liquid interfaces. In: Bard, AJ (ed) Electroanalytical chemistry, a series of advances, vol 15. Dekker, New York, pp 1–141

  9. 9.

    Marcus Y (1997) Ion properties. Dekker, New York

  10. 10.

    Noviandri I, Brown KN, Fleming DS, Gulyas PT, Lay PA, Masters AF, Philips L (1999) J Phys Chem B, 103:6713–6722

  11. 11.

    Stewart AA, Campbell JA, Girault HH, Eddowes M (1990) Ber Bunsen Ges Phys Chem 94:83–87

  12. 12.

    Shi C, Anson FC (1999) J Phys Chem B 103:6283–6289

  13. 13.

    Shi C, Anson FC (1998) Anal Chem 70:3114–3118

  14. 14.

    Mirčeski V, Lovrić M (2001) J Electroanal Chem 497:114–124

  15. 15.

    Lovrić M, Komorsky-Lovrić Š (2003) Electrochem Commun 5:637–643

  16. 16.

    Scatena LF, Richmond GL (2001) J Phys Chem B 105:11240–11250

  17. 17.

    Brown MG, Walker DS, Raymond EA, Richmond GL (2003) J Phys Chem B 107:237–244

  18. 18.

    Scatena LF, Brown MG, Richmond GL (2001) Science 292:908–912

  19. 19.

    Walker DS, Brown MG, McFearin CL, Richmond GL (2004) J Phys Chem B 108:2111–2114

References

  1. Bond AM, Scholz F (1991) Calculation of thermodynamic data from voltammetry of solid lead and mercury dithiocarbamate complexes mechanically attached to a graphite electrode. J Phys Chem 95:7460–7465

    Article  CAS  Google Scholar 

  2. Marken F, Webster RD, Bull SD, Davies SG (1997) Redox processes in microproplets studied by voltammetry, microscopy, and ESR spectroscopy: oxidation of N,N,N′,N′-tetrahexylphenylene diamine deposited on solid electrode surfaces and immersed in aqueous electrolyte solution. J Electroanal Chem 437:209–218

    Article  CAS  Google Scholar 

  3. Marken F, Compton RG, Goeting CH, Foord JS, Bull SD, Davies SG (1998) Anion detection by electro-insertion into N,N,N′,N′-tetrahexyl-phenylene-diamine (THPD) microdroplets studied by voltammetry, EQCM, and SEM techniques. Electroanal 10:821–826

    Article  CAS  Google Scholar 

  4. Scholz F, Komorsky-Lovrić Š, Lovrić M (2000) A new access to Gibbs free energies of transfer of ions across liquid-liquid interfaces and a new method to study electrochemical processes at well-defined three-phase junctions. Electrochem Commun 2:112–118

    Article  CAS  Google Scholar 

  5. Fulian Q, Ball JC, Marken F, Compton R, Fisher AC (2000) Voltammetry of electroactive oil droplets. Part I: Numerical modelling for three mechanistic models using the dual reciprocity finite element method. Electroanalysis 12:1012–1016

    Article  CAS  Google Scholar 

  6. Ball JC, Marken F, Fulian Q, Wadhawan JD, Blythe AN, Schröder U, Compton R, Bull SD, Davies SG (2000) Voltammetry of electroactive oil droplets. Part II: Comparison of experimental and simulation data for coupled ion and electron insertion processes and evidence for microscale convection. Electroanalysis 12:1017–1025

    Article  CAS  Google Scholar 

  7. Marken F, Blythe AN, Wadhawan JD, Compton RG, Bull SD, Aplin RT, Davies SG (2001) Voltammetry of electroactive liquid redox systems: anion insertion and chemical reactions in microdroplets of para-tetrakis(6-methoxyhexyl) phenylenediamine , para- and meta-tetrahexylphenylenediamine. J Solid State Electrochem 5:17–22

    Article  CAS  Google Scholar 

  8. Marken F, Compton RG, Goeting CH, Foord JS, Bull SD, Davies SG (2001) Fast electrochemical triple-interface processes at boron-doped diamond electrodes. J Solid State Electrochem 5:88–93

    Article  CAS  Google Scholar 

  9. Schröder U, Compton RG, Marken F, Bull AD, Davies SG, Gilmour S (2001) Electrochemically driven ion insertion processes across liquid/liquid boundaries: neutral versus ionic redox liquids. J Phys Chem B 105:1344–1350

    Article  Google Scholar 

  10. Komorsky-Lovrić Š, Lovrić M, Scholz F (2001) Square-wave voltammetry of decamethylferrocene at the three-phase junction organic liquid∣aqueous solution∣graphite. Coll Czech Chem Commun 66:434–444

    Article  Google Scholar 

  11. Ulmeanu S, Lee HJ, Fermin DJ, Girault HH, Shao Y (2001) Voltammetry at a liquid-liquid interface supported on a metallic electrode. Electrochem Commun 3:219–223

    Article  CAS  Google Scholar 

  12. Wadhawan JD, Compton RG, Marken F, Bull SD, Davies SG (2001) Photoelectrochemically driven processes at the N,N,N′,N′-tetrahexylphenylenediamine microdroplet/electrode/aqueous electrolyte triple interface. J Solid State Electrochem 5:348–354

    Article  Google Scholar 

  13. Komorsky-Lovrić Š, Lovrić M, Scholz F (2001) Cyclic voltammetry of decamethylferrocene at the three-phase junction organic liquid∣aqueous solution∣graphite. J Electroanal Chem 508:129–137

    Article  Google Scholar 

  14. Gergely A, Inzelt G (2001) Electropolymerization of 3-methylthiophene at liquid 3-methylthiphene/aqueous solution/graphite three-phase junction. Electrochem Commun 3:753–757

    Article  CAS  Google Scholar 

  15. Gulaboski R, Mirčeski V, Scholz F (2002) An electrochemical method for the determination of the standard Gibbs energy of anion transfer between water and n-octanol. Electrochem Commun 4:277–283

    Article  CAS  Google Scholar 

  16. Donten M, Stojek Z, Scholz F (2002) Electron transfer – ion insertion electrochemistry at an immobilised droplet: probing the three-phase electrode-reaction zone with a Pt disk microelectrode. Electrochem Commun 4:324–329

    Article  CAS  Google Scholar 

  17. Marken F, Hayman CM, Bulman Page PC (2002) Phosphate and arsenate electro-insertion processes into a N,N,N′,N′- tetraoctylphenylenediamine redox liquid. Electrochem Commun 4:462–467

    Article  CAS  Google Scholar 

  18. Marken F, Hayman CM, Bulman Page PC (2002) Chromate and dichromate electro-insertion process into a N,N,N′,N′--tetraoctylphenylenediamine redox liquid. Electroanalysis 14:1–5

    Article  Google Scholar 

  19. Mirčeski V, Scholz F (2002) Reduction of iodine at the organic liquid/aqueous solution/graphite electrode three-phase arrangement. J Electroanal Chem 522:189–198

    Article  Google Scholar 

  20. Scholz F, Gulaboski R, Mirčeski V, Langer P (2002) Quantification of the chiral recognition in electrochemically driven ion transfer across the interface water|chiral liquid. Electrochem Commun 4:659–662

    Article  CAS  Google Scholar 

  21. Wadhawan JD, Evans RG, Banks CE, Wilkins SJ, France RR, Oldham NJ, Fairbanks AJ, Wood B, Walton DJ, Schröder U, Compton RG (2002) Voltammetry of electroactive oil droplets: electrochemically-induced ion insertion, expulsion and reaction processes at microdroplets of N,N,N′,N′-tetraalkyl-para-phenylenediamines (TRPD , R = n-butyl, n-hexyl, n-heptyl and n-nonyl). J Phys Chem B 106:9619–9632

    Article  CAS  Google Scholar 

  22. Mirčeski V, Gulaboski R, Scholz F (2002) Determination of the standard Gibbs energies of transfer of cations across the nitrobenzene/water interface utilizing the reduction of iodine in an immobilized nitrobenzene droplet. Electrochem Commun 4:813–818

    Google Scholar 

  23. Myland JC, Oldham KB (2002) A model of cyclic voltammetry for a thin organic layer sandwiched between an electrode and an aqueous solution. Convolutive modelling in the absence of supporting electrolyte. J Electroanal Chem 530:1–9

    Article  CAS  Google Scholar 

  24. Komorsky-Lovrić Š, Riedl K, Gulaboski R, Mirčeski V, Scholz F (2002) Determination of standard Gibbs energies of transfer of organic anions across the water|nitrobenzene interface. Langmuir 18:8000–8005 (and Komorsky-Lovrić Š, Riedl K, Gulaboski R, Mirčeski V, Scholz F (2003) Langmuir 19:3090)

    Google Scholar 

  25. Wadhawan JD, Evans RG, Compton RG (2002) Voltammetric characteristics of graphite electrodes modified with microdroplets of n-butylferrocene . J Electroanal Chem 533:71–84

    Article  CAS  Google Scholar 

  26. Schröder U, Wadhawan J, Evans RG, Compton RG, Wood B, Walton DJ, France RR, Marken F, Bulman Page PC, Hayman CM (2002) Probing thermodynamic aspects of electrochemically driven ion-transfer processes across liquid|liquid interfaces: pure versus diluted redox liquids. J Phys Chem B 106:8697–8704

    Article  Google Scholar 

  27. Lovrić M, Scholz F (2003) Modeling cyclic voltammograms of simultaneous electron and ion transfer reactions at a conic film three-phase electrode. J Electroanal Chem 540:89–96

    Article  Google Scholar 

  28. Gulaboski R, Riedl K, Scholz F (2003) Standard Gibbs energies of transfer of halogenate and pseudohalogenate ions, halogen substituted acetates, and cycloalkyl carboxylate anions at the water|nitrobenzene interface. PCCP 5:1284–1289

    Article  CAS  Google Scholar 

  29. Gulaboski R, Mirčeski V, Scholz F (2003) Determination of the standard Gibbs energies of transfer of cations and anions of amino acids and small peptides across the water|nitrobenzene interface. Amino Acids 24:149–154

    CAS  Google Scholar 

  30. Gulaboski R, Scholz F (2003) The lipophilicity of peptide anions – an experimental data set for lipophilicity calculations. J Phys Chem B 107:5650–5657

    Article  CAS  Google Scholar 

  31. Bouchard G, Galland A, Carrupt PA, Gulaboski R, Mirčeski V, Scholz F, Girault HH (2003) Standard partition coefficients of anionic drugs in the n-octanol/water system determined by voltammetry at three-phase electrodes. Phys Chem Chem Phys 5:3748–3751

    Article  CAS  Google Scholar 

  32. Scholz F, Gulaboski R, Caban K (2003) The determination of standard Gibbs energies of transfer of cations across the nitrobenzene|water interface with the help of a three-phase electrode. Electrochem Commun 5:929–934

    Article  CAS  Google Scholar 

  33. Wain AJ, Wadhawan JD, Compton RG (2003) Electrochemical studies of vitamin K1 microdroplets: electrocatalytic hydrogen evolution. Chem Phys Chem 4:974–982

    Google Scholar 

  34. Gulaboski R, Caban K, Stojek Z, Scholz F (2004) The determination of the standard Gibbs energies of ion transfer between water and heavy water by using the three-phase electrode approach. Electrochem Commun 6:215–218

    Article  CAS  Google Scholar 

  35. Komorsky-Lovrić Š, Mirčeski V, Kabbe C, Scholz F (2004) An in situ microscopic spectroelectrochemical study of a three-phase electrode where an ion transfer at the water|nitrobenzene interface is coupled to an electron transfer at the interface ITO|nitrobenzene. J Electroanal Chem 566:371–377

    Article  Google Scholar 

  36. Mirčeski V, Gulaboski R, Scholz F (2004) Square-wave thin-film voltammetry in the presence of uncompensated resistance. Electroanal Chem 566:351–360, Electrochem Commun 12:206–209

    Google Scholar 

  37. Gulaboski R, Galland A, Bouchard G, Caban K, Kretschmer A, Carrupt PA, Stojek Z, Girault HH, Scholz F (2004) A comparison of the solvation properties of 2-nitrophenyloctyl ether , nitrobenzene , and n-octanol as assessed by ion transfer experiments. J Phys Chem B 108:4565

    Article  CAS  Google Scholar 

  38. Wadhawan JD, Wain AJ, Kirkham AN, Walton DJ, Wood B, France RR, Bull SD, Compton RG (2003) Electrocatalytic reactions mediated by N,N,N′,N′-tetraalkyl-1,4-phenylenediamine redox liquid microdroplet-modified electrodes: chemical and photochemical reactions in, and at the surface of femtoliter droplets. J Am Chem Soc 125:11418–11429

    Article  CAS  Google Scholar 

  39. Banks CE, Davies TJ, Evans RG, Hignett G, Wain AJ, Lawrence NS, Wadhawan JD, Marken F, Compton RG (2003) Electrochemistry of immobilised redox droplets: concepts and applications. Phys Chem Chem Phys 5:4053–4069

    Article  CAS  Google Scholar 

  40. Wain AJ, Lawrence NS, Greene PR, Wadhawan JD, Compton RG (2003) Reactive chemistry via the redox switching of microdroplets of 4-nitrophenyl nonyl ether in the presence of aqueous electrolytes. Phys Chem Chem Phys 5:1867–1875

    Article  CAS  Google Scholar 

  41. Wadhawan JD, Wain AJ, Compton RG (2003) Electrochemical probing of photochemical reactions inside femtolitre droplets confined to electrodes. Chem Phys Chem 4:1211–1215

    CAS  Google Scholar 

  42. Davies TJ, Brooks BA, Fisher AC, Yunus K, Wilkins AJ, Greene PR, Wadhawan JD, Compton RG (2003) A computational and experimental study of the cyclic voltammetry response of partially blocked electrodes. Part II: Randomly distributed and overlapping blocking systems. J Phys Chem B 107:6431–6444

    Article  CAS  Google Scholar 

  43. Marken F, Blythe A, Compton RG, Bull SD, Davies SG (1999) Sulfide accumulation and sensing based on electrochemical processes in microdroplets of N 1-[4-(dihexylamino)phenyl]-N 1 ,N 4 ,N 4-trihexyl-1,4-phenylenediamine. Chem Commun 1823–1824

    Google Scholar 

  44. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA (2010) Electrochemically assisted anion insertion in Au(I)-Cu(I) heterotrimetallic clusters bearing ferrocenyl groups: application to the flouride/chloride discrimination in aqueous media. Electrochem Commun 12:206–209

    Article  Google Scholar 

  45. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA (2010) Electrochemical anion sensing using electrodes chemically modified with Au(I)-Cu(I) heterotrimetallic alkynyl cluster complexes containing ferrocenyl groups. Anal Bioanal Chem 397:2013–2022

    Article  Google Scholar 

  46. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA (2011) Estimation of free energies of anion transfer from solid state electrochemistry of alkynyl-based Au(I) dinuclear and Au(I)-Cu(I) cluster complexes containing ferrocenyl groups. Electrochem Commun 13:96–98

    Article  Google Scholar 

  47. Doménech-Carbó A, Koshevoy IO, Montoya N, Karttunen AJ, Pakkanen TA (2011) Determination of individual Gibbs energies of anion transfer and excess Gibbs energies using an electrochemical method based on insertion electrochemistry of solid compounds. J Chem Eng Data 56:4577–4586

    Article  Google Scholar 

  48. Doménech-Carbó A, Montoya N, Scholz F (2011) Estimation of individual Gibbs energies of cation transfer employing the insertion electrochemistry of solid Prussian blue. J Electroanal Chem 657:117–122

    Article  Google Scholar 

  49. Doménech-Carbó A (2012) Solvent-independent electrode potentials of solids undergoing insertion electrochemical reactions: Part I. Theory. J Phys Chem C 116:25977–25983

    Article  Google Scholar 

  50. Doménech-Carbó A, Koshevoy IO, Montoya N, Pakkanen TA, Doménech-Carbó MT (2012) Solvent-independent electrode potentials of solids undergoing insertion electrochemical reactions: Part II. Experimental data for alkynyl-diphosphine dinuclear Au(I) complexes undergoing electron exchange coupled to anion exchange. J Phys Chem C 116:25984–25992

    Article  Google Scholar 

  51. Doménech-Carbó A, Scholz F, Montoya N (2012) Solvent-independent electrode potentials of solids undergoing insertion electrochemical reactions: Part III. Experimental data for Prussian blue undergoing electron exchange coupled to cation exchange. J Phys Chem C 116:25993–25999

    Article  Google Scholar 

  52. Scholz F, Gulaboski R (2005) Gibbs energies of transfer of chiral anions across the interface water|chiral organic solvent determined with the help of three-phase electrodes. Faraday Discuss 129:169–177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scholz, F., Schröder, U., Gulaboski, R., Doménech-Carbó, A. (2015). Immobilized Droplets. In: Electrochemistry of Immobilized Particles and Droplets. Springer, Cham. https://doi.org/10.1007/978-3-319-10843-8_6

Download citation

Publish with us

Policies and ethics