Skip to main content

Low Power Neuromorphic Architectures to Enable Pervasive Deployment of Intrusion Detection Systems

  • Chapter
  • First Online:
Cybersecurity Systems for Human Cognition Augmentation

Part of the book series: Advances in Information Security ((ADIS,volume 61))

  • 1308 Accesses

Abstract

Intrusion detection systems (IDS) are commonly utilized to prevent cyber-attacks. With the wide proliferation of network connected devices, running IDS algorithms on all devices (including mobile devices) within a network can help bolster security. However, the cost of running IDS algorithms on all networked devices can be high in terms of power and physical resources (especially battery operated ones). Several recent studies have proposed mapping applications to neural network form and then running these on specialized neural network accelerators [1, 2] to reduce power consumption. Neural accelerators can result in power reduction from about 2 times to several thousand times compared to RISC processors [3]. Hence utilizing these neural network accelerators can enabling the deployment of IDS algorithms across all devices in a network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Belhadj, A. J. L. Zheng, R. Héliot, and O. Temam. “Continuous real-world inputs can open up alternative accelerator designs,” SIGARCH Comput. Archit. News 41, 3 (June 2013)

    Google Scholar 

  2. Steve Esser, Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Davis Barch, Arnon Amir, John Arthur, Andrew Cassidy, Myron Flickner, Paul Merolla, Shyamal Chandra, Nicola Basilico, Stefano Carpin, Tom Zimmerman, Frank Zee, Rodrigo Alvarez-Icaza, Jeffrey Kusnitz, Theodore Wong, William Risk, Emmett McQuinn, Tapan Nayak, Raghavendra Singh and Dharmendra Modha, “Cognitive Computing Systems: Algorithms and Applications for Networks of Neurosynaptic Cores,” International Joint Conference on Neural Networks, Dallas, Texas, 2013.

    Google Scholar 

  3. T. Taha, R. Hasan, C. Yakopcic and M. McLean, “Exploring the Design Space of Specialized Multicore Neural Processors,” International Joint Conference on Neural Networks (IJCNN), August 2013. Available at: http://homepages.udayton.edu/~ttaha1/papers/IJCNN13_cores.pdf

  4. T. Bass, “Intrusion detection systems and multisensor data fusion,”Communications of the ACM 43, no. 4 (2000): 99-105.

    Google Scholar 

  5. E. Marcello, C. Mazzariello, F. Oliviero, S. P. Romano, and C. Sansone, “Evaluating Pattern Recognition Techniques in Intrusion Detection Systems,” In PRIS, pp. 144-153. 2005.

    Google Scholar 

  6. N. Jiang, and Li Yu, “Intrusion detection using pattern recognition methods,” In Optics East 2007, pp. 67730S-67730S. International Society for Optics and Photonics, 2007.

    Google Scholar 

  7. L. O. Chua, “Memristor-The Missing Circuit Element,” IEEE Transactions on Circuit Theory, vol.18, no.5, pp 507-519, 1971.

    Google Scholar 

  8. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing Memristor found,” Nature, 453, pp 80-83, 2008.

    Article  Google Scholar 

  9. R. S. Williams, “How We Found The Missing Memristor,” IEEE Spectrum, vol. 45, no. 12, pp. 28-35, 2008.

    Article  Google Scholar 

  10. C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, “Generalized Memristive Device SPICE Model and its Application in Circuit Design,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23 (2013) pp. 1201-1214.

    Article  Google Scholar 

  11. H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Acceleration for General-Purpose Approximate Programs,” International Symposium on Microarchitecture (MICRO), 2012.

    Google Scholar 

  12. H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Towards Neural Acceleration for General-Purpose Approximate Computing,” Workshop on Energy Efficient Design (WEED), 2012.

    Google Scholar 

  13. P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, D. S. Modha, “A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm,” IEEE Custom Integrated Circuits Conference (CICC) pp.1-4, 19-21 Sept. 2011.

    Google Scholar 

  14. J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S. Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar, D. S. Modha, “Building block of a programmable neuromorphic substrate: A digital neurosynaptic core,” International Joint Conference on Neural Networks (IJCNN), pp.1-8, June 2012.

    Google Scholar 

  15. N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0” In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 40), Washington, DC, USA, 3-14, 2007.

    Google Scholar 

  16. A. B. Kahng, B. Li, L. S. Peh, and K. Samadi, “ORION 2.0: A fast and accurate NoC power and area model for early-stage design space exploration,” Design, Automation & Test in Europe Conference & Exhibition, pp.423-428, 20-24 April 2009.

    Google Scholar 

  17. W. Lu, K.-H. Kim, T. Chang, S. Gaba, “Two-terminal resistive switches (memristors) for memory and logic applications,” Asia and South Pacific Design Automation Conference, pp. 217-223, 2011.

    Google Scholar 

  18. C. Yakopcic and T. M. Taha, “Energy Efficient Perceptron Pattern Recognition Using Segmented Memristor Cross-bar Arrays,” IEEE International Joint Conference on Neural Networks (IJCNN), August 2013.

    Google Scholar 

  19. S. Shin, K. Kim, S.-M. Kang, “Analysis of Passive Memristive Devices Array: Data-Dependent Statistical Model and Self-Adaptable Sense Resistance for RRAMs,” Proceedings of the IEEE, 100(6), June 2012.

    Google Scholar 

  20. B. Han, and T. M. Taha, “Acceleration of spiking neural network based pattern recognition on NVIDIA graphics processors,” Journal of Applied Optics, 49(101), pp. 83-91, 2010.

    Article  Google Scholar 

  21. J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A.Veidenbaum, “Efficient simulation of large-scale spiking neural networks using CUDA graphics processors,” In Proceedings of the 2009 international joint conference on Neural Networks (IJCNN). IEEE Press, Piscataway, NJ, USA, 3201-3208, 2009.

    Google Scholar 

  22. T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere, S. Qiu, M. Sebag, O. Temam, “BenchNN: On the Broad Potential Application Scope of Hardware Neural Network Accelerators,” IEEE International Symposium on Workload Characterization (IISWC), November 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Taha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taha, T.M., Hasan, R., Yakopcic, C., McLean, M.R. (2014). Low Power Neuromorphic Architectures to Enable Pervasive Deployment of Intrusion Detection Systems. In: Pino, R., Kott, A., Shevenell, M. (eds) Cybersecurity Systems for Human Cognition Augmentation. Advances in Information Security, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-10374-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10374-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10373-0

  • Online ISBN: 978-3-319-10374-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics