Skip to main content

Genetic and Genomics of Uterine Myomas

  • Chapter
  • First Online:
Uterine Myoma, Myomectomy and Minimally Invasive Treatments

Abstract

Uterine fibroids (also known as leiomyomas or myomas) are benign smooth muscle uterine tumors of unknown aetiology with a high incidence in women of reproductive age (Fig. 2.1). These kinds of lesions arise from myometrial transformation as a result of specific physiological and pathological conditions [1]. Uterine myomas are thought to be monoclonal tumors that occur via clonal expansion from a single mutated myometrial smooth muscle stem cell (Fig. 2.2) [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulun SE. Uterine fibroids. N Engl J Med. 2013;369(14):1344–55.

    Article  CAS  PubMed  Google Scholar 

  2. Hashimoto K, Azuma C, Kamiura S, et al. Clonal determination of uterine leiomyomas by analyzing differential inactivation of the X-chromosome-linked phosphoglycerokinase gene. Gynecol Obstet Invest. 1995;40(3):204–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ono M, Qiang W, Serna VA, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7(5):e36935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Khan AT, Shehmar M, Gupta JK. Uterine fibroids: current perspectives. Int J Womens Health. 2014;6:95–114.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Laughlin SK, Schroeder JC, Baird DD. New directions in the epidemiology of uterine fibroids. Semin Reprod Med. 2010;28(3):204–17.

    Article  CAS  PubMed  Google Scholar 

  6. Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril. 2002;78(1):1–12.

    Article  PubMed  Google Scholar 

  7. Bogusiewicz M, Stryjecka-Zimmer M, Postawski K, et al. Activity of matrix metalloproteinase-2 and -9 and contents of their tissue inhibitors in uterine leiomyoma and corresponding myometrium. Gynecol Endocrinol. 2007;23(9):541–6.

    Article  CAS  PubMed  Google Scholar 

  8. Malvasi A, Cavallotti C, Nicolardi G, et al. The opioid neuropeptides in uterine fibroid pseudocapsules: a putative association with cervical integrity in human reproduction. Gynecol Endocrinol. 2013;29(11):982–8.

    Article  CAS  PubMed  Google Scholar 

  9. Ciavattini A, Di Giuseppe J, Stortoni P, Montik N, et al. Uterine fibroids: pathogenesis and interactions with endometrium and endomyometrial junction. Obstet Gynecol Int. 2013;2013:173184.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Olmos Grings A, Lora V, Dias Ferreira G, et al. Protein expression of estrogen receptors α and β and aromatase in myometrium and uterine leiomyoma. Gynecol Obstet Invest. 2012;73(2):113–7.

    Article  CAS  Google Scholar 

  11. Ishikawa H, Ishi K, Ann Serna V, et al. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151(6):2433–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Maruo T, Matsuo H, Shimomura Y, et al. Effects of progesterone on growth factor expression in human uterine leiomyoma. Steroids. 2003;68(10–13):817–24.

    Article  CAS  PubMed  Google Scholar 

  13. Lora V, Grings AO, Capp E, et al. Gene and protein expression of progesterone receptor isoforms A and B, p53 and p21 in myometrium and uterine leiomyoma. Arch Gynecol Obstet. 2012;286(1):119–24.

    Article  CAS  PubMed  Google Scholar 

  14. Matsuo H, Kurachi O, Shimomura Y, et al. Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. Oncology. 1999;57 Suppl 2:49–58.

    Article  CAS  PubMed  Google Scholar 

  15. Wang L, Mou X, Xiao L, et al. T-cadherin expression in uterine leiomyoma. Arch Gynecol Obstet. 2013;288(3):607–14.

    Article  CAS  PubMed  Google Scholar 

  16. Pan Q, Luo X, Chegini N. Genomic and proteomic profiling I: leiomyomas in African Americans and Caucasians. Reprod Biol Endocrinol. 2007;5:34.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mäkinen N, Mehine M, Tolvanen J, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5.

    Article  PubMed  Google Scholar 

  18. Markowski DN, Bartnitzke S, Löning T, et al. MED12 mutations in uterine fibroids their relationship to cytogenetic subgroups. Int J Cancer. 2012;131(7):1528–36.

    Article  CAS  PubMed  Google Scholar 

  19. Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Arai E, Sakamoto H, Ichikawa H, et al. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int J Cancer. 2014. doi:10.1002/ijc.28768.

    Google Scholar 

  21. Huang S, Hölzel M, Knijnenburg T, et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell. 2012;151(5):937–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Belakavadi M, Fondell JD. Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol. 2006;156:23–43.

    CAS  PubMed  Google Scholar 

  23. Kato Y, Habas R, Katsuyama Y, et al. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Nature. 2002;418(6898):641–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kim S, Xu X, Hecht A, Boyer TG. Mediatoris a transducer of Wnt/beta-cateninsignaling. J Biol Chem. 2006;281:14066–75.

    Article  CAS  PubMed  Google Scholar 

  25. Guo X, Wang XF. A mediator lost in the war on cancer. Cell. 2012;151:927–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86:913–20.

    CAS  PubMed  Google Scholar 

  27. Catherino WH, Leppert PC, Stenmark MH, et al. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer. 2004;40:204–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zhou H, Kim S, Ishii S, et al. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol Cell Biol. 2006;26(23):8667–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mäkinen N, Vahteristo P, Bützow R, et al. Exomic landscape of MED12 mutation-negative and -positive uterine leiomyomas. Int J Cancer. 2014;134(4):1008–12.

    Article  PubMed  Google Scholar 

  30. Schwetye KE, Pfeifer JD, Duncavage EJ. MED12 exon 2 mutations in uterine and extrauterine smooth muscle tumors. Hum Pathol. 2014;45(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  31. Gross KL, Morton CC. Genetics and the development of fibroids. Clin Obstet Ginecol. 2001;4:335–49.

    Article  Google Scholar 

  32. Ligon AH, Scott IC, Takahara K, et al. PCOLCE deletion and expression analyses in uterine leiomyomata. Cancer Genet Cytogenet. 2002;137:133–7.

    Article  CAS  PubMed  Google Scholar 

  33. Schoenmakers EF, Wanschura S, Mols R, et al. Recurrent rearrangements in the high mobility group protein gene HMGI-C, in benign mesenchymal tumourst. Nat Genet. 1995;10(4):436–44.

    Article  CAS  PubMed  Google Scholar 

  34. Quintana DG. ORC5L, a new member of the human origin recognition complex, is deleted in uterine leiomyomas and malignant myeloid diseases. J Biol Chem. 1998;273:27137–45.

    Article  CAS  PubMed  Google Scholar 

  35. Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. Cancer Genet Cytogenet. 2005;158:1–26.

    Article  CAS  PubMed  Google Scholar 

  36. Ligon AH, Morton CC. Genetics of uterine leiomyomata. Genes Chromosomes Cancer. 2000;28:235–45.

    Article  CAS  PubMed  Google Scholar 

  37. Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat Rev Cancer. 2007;7:899–910.

    Article  CAS  PubMed  Google Scholar 

  38. Kazmierczak B, Dal Cin P, Wanschura S, et al. HMGIY is the target of 6p21.3 rearrangements in various benign mesenchymal tumors. Genes Chromosomes Cancer. 1998;23:279–85.

    Article  CAS  PubMed  Google Scholar 

  39. Sornberger KS, Weremowicz S, Williams AJ, et al. Expression of HMGIY in three uterine leiomyomata with complex rearrangements of chromosome 6. Cancer Genet Cytogenet. 1999;114:9–16.

    Article  CAS  PubMed  Google Scholar 

  40. Ingraham SE, Lynch RA, Kathiresan S, et al. hREC2, a RAD51- like gene, is disrupted by t(12;14) (q15;q24.1) in a uterine leiomyoma. Cancer Genet Cytogenet. 1999;115:56–61.

    Article  CAS  PubMed  Google Scholar 

  41. Grosschedl R, Giese K, Pagel J. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 1994;10(3):94–100.

    Article  CAS  PubMed  Google Scholar 

  42. Reeves R, Beckerbauer L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim Biophys Acta. 2001;1519(1–2):13–29.

    Article  CAS  PubMed  Google Scholar 

  43. Ashar HR, Fejzo MS, Tkachenko A, Zhou X, et al. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell. 1995;82(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  44. Kazmierczak B, Wanschura S, Rosigkeit J, et al. Molecular characterization of 12q14-15 rearrangements in three pulmonary chondroid hamartomas. Cancer Res. 1995;55(12):2497–9.

    CAS  PubMed  Google Scholar 

  45. Schoenmakers EF, Bunt J, Hermers L, et al. Identification of CUX1 as the recurrent chromosomal band 7q22 target gene in human uterine leiomyoma. Genes Chromosomes Cancer. 2013;52:11–23.

    Article  CAS  PubMed  Google Scholar 

  46. Berner JM, Meza-Zepeda L, Kools PF, et al. HMGIC, the gene for an architectural transcription factor is amplified and rearranged in a subset of human sarcomas. Oncogene. 1997;14(24):2935–41.

    Article  CAS  PubMed  Google Scholar 

  47. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315(5818):1576–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007;21(9):1025–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Langelotz C, Schmid P, Jakob C, et al. Expression of high-mobility-group-protein HMGI-C mRNA in the peripheral blood is an independent poor prognostic indicator for survival in metastatic breast cancer. Br J Cancer. 2003;88(9):1406–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Motoyama K, Inoue H, Nakamura Y, et al. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res. 2008;14(8):2334–40.

    Article  CAS  PubMed  Google Scholar 

  51. Shell S, Park SM, Radjabi AR, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA. 2007;104(27):11400–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yu F, Yao H, Zhu P, et al. Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.

    Article  CAS  PubMed  Google Scholar 

  53. Hammond SM, Sharpless NE. HMGA2, microRNAs, and stem cell aging. Cell. 2008;135:1013–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Peng Y, Laser J, Shi G, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res. 2008;6:663–73.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar MS, Armenteros-Monterroso E, East P, et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature. 2014;505:212–7.

    Article  CAS  PubMed  Google Scholar 

  56. Mehine M, Kaasinen E, Mäkinen N, et al. Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med. 2013;369(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  57. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Garcia-Torres R, Cruz D, Orozco L, et al. Alport syndrome and diffuse leiomyomatosis: clinical aspects, pathology, molecular biology and extracellular matrix studies: a synthesis. Nephrologie. 2000;21:9–12.

    CAS  PubMed  Google Scholar 

  59. Cha PC, Takahashi A, Hosono N, et al. A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat Genet. 2011;43(5):447–50.

    Article  CAS  PubMed  Google Scholar 

  60. Rogers R, Norian J, Malik M, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198(4):474.e1–11.

    Article  Google Scholar 

  61. Lehtonen R, Kiuru M, Vanharanta S, et al. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromicuterine leiomyomas but is rare in othertumors. Am J Pathol. 2004;164:17–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Lehtonen HJ. Hereditary leiomyomatosisand renal cell cancer: update onclinical and molecular characteristics. Fam Cancer. 2011;10:397–411.

    Article  PubMed  Google Scholar 

  63. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–32.

    Article  CAS  PubMed  Google Scholar 

  64. Li S, Chiang TC, Richard-Davis G, et al. DNA hypomethylation and imbalanced expressionof DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol. 2003;90:123–30.

    Article  CAS  PubMed  Google Scholar 

  65. Asada H, Yamagata Y, Taketani T, et al. Potential link between estrogen receptor-alpha gene hypomethylation and uterine fibroid formation. Mol Hum Reprod. 2008;14(9):539–45.

    Article  CAS  PubMed  Google Scholar 

  66. Kawaguchi K, Oda Y, Saito T, et al. Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis. J Pathol. 2003;201(3):487–95.

    Article  CAS  PubMed  Google Scholar 

  67. Kawaguchi K, Oda Y, Saito T, et al. Death-associated protein kinase (DAP kinase) alteration in soft tissue leiomyosarcoma: promoter methylation or homozygous deletion is associated with a loss of DAP kinase expression. Hum Pathol. 2004;35(10):1266–71.

    Article  CAS  PubMed  Google Scholar 

  68. Gloudemans T, Pospiech I, Van Der Ven LT, et al. Expression and CpG methylation of the insulin-like growth factor II gene in human smooth muscle tumors. Cancer Res. 1992;52(23):6516–21.

    CAS  PubMed  Google Scholar 

  69. Navarro A, Yin P, Monsivais D, et al. Genome-wide DNA methylation indicates silencing of tumor suppressor genes inuterine leiomyoma. PLoS One. 2012;7(3):e33284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94(6):776–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wang T, Zhang X, Obijuru L, et al. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas. Genes Chromosomes Cancer. 2007;46(4):336–47.

    Article  CAS  PubMed  Google Scholar 

  72. Marsh EE, Lin Z, Yin P, et al. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium. Fertil Steril. 2008;89(6):1771–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Ono M, Yin P, Navarro A, et al. Paracrine activation of WNT/β-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci U S A. 2013;110(42):17053–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Karra L, Shushan A, Ben-Meir A, et al. Changes related to phosphatidylinositol 3-kinase/Akt signaling in leiomyomas: possible involvement of glycogen synthase kinase 3alpha and cyclin D2 in the pathophysiology. Fertil Steril. 2010;93(8):2646–51.

    Article  CAS  PubMed  Google Scholar 

  75. Varghese BV, Koohestani F, McWilliams M, et al. Loss of the repressor REST in uterine fibroids promotes aberrant G protein-coupled receptor 10 expression and activates mammalian target of rapamycin pathway. Proc Natl Acad Sci U S A. 2013;110(6):2187–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Marret H, Fritel X, Ouldamer L, et al. Therapeutic management of uterine fibroid tumors: updated French guidelines. Eur J Obstet Gynecol Reprod Biol. 2012;165(2):156–64.

    Article  PubMed  Google Scholar 

  77. Di Fazio P, Montalbano R, Neureiter D, et al. Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines. Exp Cell Res. 2012;318(15):1832–43.

    Article  PubMed  Google Scholar 

  78. Pejić S, Kasapović J, Todorović A, et al. Lipid peroxidation and antioxidant status in blood of patients with uterine myoma, endometrial polypus, hyperplastic and malignant endometrium. Biol Res. 2006;39(4):619–29.

    PubMed  Google Scholar 

  79. El Ayed M, Bonnel D, Longuespée R, et al. MALDI imaging mass spectrometry in ovarian cancer for tracking, identifying, and validating biomarkers. Med Sci Monit. 2010;16(8):BR233–45.

    PubMed  Google Scholar 

  80. Franck J, Arafah K, Elayed M, et al. MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics. 2009;8(9):2023–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Vergara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vergara, D., Greco, M. (2015). Genetic and Genomics of Uterine Myomas. In: Tinelli, A., Malvasi, A. (eds) Uterine Myoma, Myomectomy and Minimally Invasive Treatments. Springer, Cham. https://doi.org/10.1007/978-3-319-10305-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10305-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10304-4

  • Online ISBN: 978-3-319-10305-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics