Skip to main content

Protein Ligand Docking in Drug Discovery

  • Chapter
  • First Online:
Protein Modelling

Abstract

Molecular docking has become an increasingly important tool for structural biochemistry and drug discovery. In this review, we present a brief introduction of the main available molecular docking methods, with particular emphasis on the search algorithms and scoring functions. The relevant basic theories, including the most common methods are exposed in detail and their merits and field of applicability are discussed. Finally, the current challenges in the field of protein-ligand are dissected and discussed, trying to anticipate the next years in this exciting field of research.

Authors N.F. Brás, N.M.F.S.A. Cerqueira and S.F. Sousa contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sousa SF, Cerqueira NM, Fernandes PA, Ramos MJ (2010) Virtual screening in drug design and development. Comb Chem High Throughput Screening 13:442–453

    CAS  Google Scholar 

  2. Cerqueira NM, Sousa SF, Fernandes PA, Ramos MJ (2009) Virtual screening of compound libraries. Methods Mol Biol 572:57–70

    Google Scholar 

  3. Ewing TJA, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    CAS  Google Scholar 

  4. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    CAS  Google Scholar 

  5. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5

    CAS  Google Scholar 

  6. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    CAS  Google Scholar 

  7. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins-Struct Funct Genet 37:228–241

    CAS  Google Scholar 

  8. Claussen H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308:377–395

    CAS  Google Scholar 

  9. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins-Struct Funct Bioinform 55:288–304

    CAS  Google Scholar 

  10. Chang DTH, Oyang YJ, Lin JH (2005) MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33:W233–W238

    CAS  Google Scholar 

  11. Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49:3315–3321

    CAS  Google Scholar 

  12. Chen K, Li TH, Cao TC (2006) Tribe-PSO: a novel global optimization algorithm and its application in molecular docking. Chemometr Intell Lab Syst 82:248–259

    CAS  Google Scholar 

  13. Chen H-M, Liu B-F, Huang H-L, Hwang S-F, Ho S-Y (2007) SODOCK: swarm optimization for highly flexible protein-ligand docking. J Comput Chem 28:612–623

    CAS  Google Scholar 

  14. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511

    CAS  Google Scholar 

  15. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    CAS  Google Scholar 

  16. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins-Struct Funct Genet 52:609–623

    CAS  Google Scholar 

  17. Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor-sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    CAS  Google Scholar 

  18. Abagyan R, Totrov M, Kuznetsov D (1994) ICM—a new method for protein modeling and design—applications to docking and structure prediction from the distorted native conformation. J Comput Chem 15:488–506

    CAS  Google Scholar 

  19. Totrov M, Abagyan R (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins Suppl 1:215–220

    Google Scholar 

  20. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. docking accuracy. J Med Chem 47:1739–1749

    CAS  Google Scholar 

  21. Wu GS, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—a CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    CAS  Google Scholar 

  22. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307

    CAS  Google Scholar 

  23. Liu M, Wang SM (1999) MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13:435–451

    CAS  Google Scholar 

  24. Li L, Chen R, Weng ZP (2003) RDOCK: refinement of rigid-body protein docking predictions. Proteins-Struct Funct Genet 53:693–707

    CAS  Google Scholar 

  25. Chen R, Li L, Weng ZP (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins-Struct Funct Genet 52:80–87

    CAS  Google Scholar 

  26. Pierce B, Tong WW, Weng ZP (2005) M-ZDOCK: a grid-based approach for C-n symmetric multimer docking. Bioinformatics 21:1472–1478

    CAS  Google Scholar 

  27. Sauton N, Lagorce D, Villoutreix BO, Miteva MA (2008) MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening, BMC Bioinform 9(1):184

    Google Scholar 

  28. Hocker HJ, Cho K-J, Chen C-YK, Rambahal N, Sagineedu SR, Shaari K, Stanslas J, Hancock JF, Gorfe AA (2013) Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc Natl Acad Sci USA 110:10201–10206

    CAS  Google Scholar 

  29. Grant BJ, Lukman S, Hocker HJ, Sayyah J, Brown JH, McCammon JA, Gorfe AA (2011) Novel allosteric sites on Ras for lead generation. Plos One 6(10):e25711

    Google Scholar 

  30. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    CAS  Google Scholar 

  31. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    CAS  Google Scholar 

  32. Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking: current status and future challenges. Proteins-Struct Funct Bioinform 65:15–26

    CAS  Google Scholar 

  33. Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153:S7–S26

    CAS  Google Scholar 

  34. Yi H, Qiu S, Cao Z, Wu Y, Li W (2008) Molecular basis of inhibitory peptide maurotoxin recognizing Kv1.2 channel explored by ZDOCK and molecular dynamic simulations. Proteins-Struct Funct Bioinform 70:844–854

    CAS  Google Scholar 

  35. Imberty A, Hardman KD, Carver JP, Perez S (1991) Molecular modelling of protein-carbohydrate interactions. Docking of monosaccharides in the binding site of concanavalin A. Glycobiology 1:631–642

    CAS  Google Scholar 

  36. Leach AR, Kuntz ID (1992) Conformational-analysis of flexible ligands in macromolecular receptor-sites. J Comput Chem 13:730–748

    CAS  Google Scholar 

  37. Harkcom WT, Bevan DR (2007) Molecular docking of inhibitors into monoamine oxidase B. Biochem Biophys Res Commun 360:401–406

    CAS  Google Scholar 

  38. Rajamani R, Good AC (2007) Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development. Curr Opin Drug Discov Devel 10:308–315

    CAS  Google Scholar 

  39. Lorber DM, Shoichet BK (2005) Hierarchical docking of databases of multiple ligand conformations. Curr Top Med Chem 5:739–749

    CAS  Google Scholar 

  40. Farag NA, Mohamed SR, Soliman GAH (2008) Design, synthesis, and docking studies of novel benzopyrone derivatives as H(1)-antihistaminic agents. Bioorg Med Chem 16:9009–9017

    CAS  Google Scholar 

  41. Sato H, Shewchuk LM, Tang J (2006) Prediction of multiple binding modes of the CDK2 inhibitors, anilinopyrazoles, using the automated docking programs GOLD, FlexX, and LigandFit: an evaluation of performance. J Chem Inf Model 46:2552–2562

    CAS  Google Scholar 

  42. Bras NF, Cerqueira NMFSA, Fernandes PA, Ramos MJ (2008) Carbohydrate-binding modules from family 11: understanding the binding mode of polysaccharides. Int J Quantum Chem 108:2030–2040

    CAS  Google Scholar 

  43. Bras NF, Fernandes PA, Ramos MJ (2009) Docking and molecular dynamics studies on the stereoselectivity in the enzymatic synthesis of carbohydrates. Theoret Chem Acc 122:283–296

    CAS  Google Scholar 

  44. Bras NF, Goncalves R, Fernandes PA, Mateus N, Ramos MJ, de Freitas V (2010) Understanding the binding of procyanidins to pancreatic elastase by experimental and computational methods. Biochemistry 49:5097–5108

    CAS  Google Scholar 

  45. Bras NF, Goncalves R, Mateus N, Fernandes PA, Ramos MJ, Do Freitas V (2010) Inhibition of pancreatic elastase by polyphenolic compounds. J Agric Food Chem 58:10668–10676

    Google Scholar 

  46. Moorthy NSHN, Bras NF, Ramos MJ, Fernandes PA (2012) Virtual screening and QSAR study of some pyrrolidine derivatives as alpha-mannosidase inhibitors for binding feature analysis. Bioorg Med Chem 20:6945–6959

    CAS  Google Scholar 

  47. Francisco CS, Rodrigues LR, Cerqueira NM, Oliveira-Campos AM, Rodrigues LM, Esteves AP (2013) Synthesis of novel psoralen analogues and their in vitro antitumor activity. Bioorg Med Chem 21:5047–5053

    CAS  Google Scholar 

  48. Gupta S, Rodrigues LM, Esteves AP, Oliveira-Campos AM, Nascimento MS, Nazareth N, Cidade H, Neves MP, Fernandes E, Pinto M, Cerqueira NM, Bras N (2008) Synthesis of N-aryl-5-amino-4-cyanopyrazole derivatives as potent xanthine oxidase inhibitors. Eur J Med Chem 43:771–780

    CAS  Google Scholar 

  49. Francisco CS, Rodrigues LR, Cerqueira NM, Oliveira-Campos AM, Rodrigues LM (2012) Synthesis of novel benzofurocoumarin analogues and their anti-proliferative effect on human cancer cell lines. Eur J Med Chem 47:370–376

    CAS  Google Scholar 

  50. Chung HW, Cho SJ, Lee K-R, Lee K-H, IOP (2013) Self-adaptive differential evolution algorithm incorporating local search for protein-ligand docking. In: Ic-Msquare 2012: international conference on mathematical modelling in physical sciences

    Google Scholar 

  51. Pei JF, Wang Q, Liu ZM, Li QL, Yang K, Lai LH (2006) PSI-DOCK: towards highly efficient and accurate flexible ligand docking. Proteins-Struct Funct Bioinform 62:934–946

    CAS  Google Scholar 

  52. Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD (1998) Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins-Struct Funct Genet 33:367–382

    CAS  Google Scholar 

  53. Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y (2013) FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem 34:67–75

    Google Scholar 

  54. Mustard D, Ritchie DW (2005) Docking essential dynamics eigenstructures. Proteins-Struct Funct Bioinform 60:269–274

    CAS  Google Scholar 

  55. Trosset JY, Scheraga HA (1999) PRODOCK: software package for protein modeling and docking. J Comput Chem 20:412–427

    CAS  Google Scholar 

  56. Cerqueira NMFSA, Bras NF, Fernandes PA, Ramos MJ (2009) MADAMM: a multistaged docking with an automated molecular modeling protocol. Proteins-Struct Funct Bioinform 74:192–206

    CAS  Google Scholar 

  57. Leone V, Marinelli F, Carloni P, Parrinello M (2010) Targeting biomolecular flexibility with metadynamics. Curr Opin Struct Biol 20:148–154

    CAS  Google Scholar 

  58. Pak YS, Wang SM (2000) Application of a molecular dynamics simulation method with a generalized effective potential to the flexible molecular docking problems. J Phys Chem B 104:354–359

    CAS  Google Scholar 

  59. Caflisch A, Fischer S, Karplus M (1997) Docking by Monte Carlo minimization with a solvation correction: application to an FKBP-substrate complex. J Comput Chem 18:723–743

    CAS  Google Scholar 

  60. Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins-Struct Funct Genet 8:195–202

    CAS  Google Scholar 

  61. Hartmann C, Antes I, Lengauer T (2009) Docking and scoring with alternative side-chain conformations. Proteins-Struct Funct Bioinform 74:712–726

    CAS  Google Scholar 

  62. Taylor RD, Jewsbury PJ, Essex JW (2003) FDS: Flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. J Comput Chem 24:1637–1656

    CAS  Google Scholar 

  63. Bottegoni G, Kufareva I, Totrov M, Abagyan R (2008) A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). J Comput Aided Mol Des 22:311–325

    CAS  Google Scholar 

  64. Smiesko M (2013) DOLINA—docking based on a local induced-fit algorithm: application toward small-molecule binding to nuclear receptors. J Chem Inf Model 53:1415–1423

    CAS  Google Scholar 

  65. Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184

    CAS  Google Scholar 

  66. Schnecke V, Swanson CA, Getzoff ED, Tainer JA, Kuhn LA (1998) Screening a peptidyl database for potential ligands to proteins with side-chain flexibility. Proteins-Struct Funct Genet 33:74–87

    CAS  Google Scholar 

  67. Apostolakis J, Pluckthun A, Caflisch A (1998) Docking small ligands in flexible binding sites. J Comput Chem 19:21–37

    CAS  Google Scholar 

  68. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9:1–15

    CAS  Google Scholar 

  69. Hashmi I, Shehu A (2013) HopDock: a probabilistic search algorithm for decoy sampling in protein-protein docking. Proteome Sci 11(Suppl 1):S6

    Google Scholar 

  70. Gabb HA, Jackson RM, Sternberg MJE (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272:106–120

    CAS  Google Scholar 

  71. Katchalskikatzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular-surface recognition—determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA 89:2195–2199

    CAS  Google Scholar 

  72. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins-Struct Funct Bioinform 65:392–406

    CAS  Google Scholar 

  73. Wolfson HJ, Rigoutsos I (1997) Geometric hashing: an overview. IEEE Comput Sci Eng 4:10–21

    Google Scholar 

  74. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Geometry-based flexible and symmetric protein docking. Proteins-Struct Funct Bioinform 60:224–231

    CAS  Google Scholar 

  75. Sternberg MJE, Gabb HA, Jackson RM (1998) Predictive docking of protein-protein and protein-DNA complexes. Curr Opin Struct Biol 8:250–256

    CAS  Google Scholar 

  76. Smith GR, Sternberg MJE (2002) Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12:28–35

    Google Scholar 

  77. Fischer D, Lin SL, Wolfson HL, Nussinov R (1995) A geometry-based suite of molecular docking processes. J Mol Biol 248:459–477

    CAS  Google Scholar 

  78. Pang YP, Kozikowski AP (1994) Prediction of the binding-site of 1-benzyl-4- (5, 6-dimethoxy-1-indanon-2-yl)methyl piperidine in acetylcholinesterase by docking studies with the SYSDOC program. J Comput Aided Mol Des 8:683–693

    CAS  Google Scholar 

  79. Perola E, Xu K, Kollmeyer TM, Kaufmann SH, Prendergast FG, Pang YP (2000) Successful virtual screening of a chemical database for farnesyltransferase inhibitor leads. J Med Chem 43:401–408

    CAS  Google Scholar 

  80. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    CAS  Google Scholar 

  81. Muegge I, Rarey M (2001) Small molecule docking and scoring. Rev Comput Chem 17(17):1–60

    CAS  Google Scholar 

  82. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705

    CAS  Google Scholar 

  83. Bolstad ESD, Anderson AC (2009) In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Proteins-Struct Funct Bioinform 75:62–74

    CAS  Google Scholar 

  84. Cavasotto CN, Singh N (2008) Docking and high throughput docking: successes and the challenge of protein flexibility. Curr Comput Aided Drug Des 4:221–234

    CAS  Google Scholar 

  85. Bohm HJ (1992) The computer-program LUDI—a new method for the denovo design of enzyme-inhibitors. J Comput Aided Mol Des 6:61–78

    CAS  Google Scholar 

  86. Mizutani MY, Tomioka N, Itai A (1994) Rational automatic search method for stable docking models of protein and ligand. J Mol Biol 243:310–326

    CAS  Google Scholar 

  87. Welch W, Ruppert J, Jain AN (1996) Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 3:449–462

    CAS  Google Scholar 

  88. Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306

    CAS  Google Scholar 

  89. Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26:198–212

    CAS  Google Scholar 

  90. Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994) FLOG—a system to select quasi-flexible ligands complementary to a receptor of known 3-dimensional structure. J Comput Aided Mol Des 8:153–174

    CAS  Google Scholar 

  91. More JJ, Wu ZJ (1999) Distance geometry optimization for protein structures. J Global Optim 15:219–234

    Google Scholar 

  92. Thomsen R, IEEE (2003) Flexible ligand docking using differential evolution. IEEE

    Google Scholar 

  93. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151–166

    CAS  Google Scholar 

  94. Hart TN, Read RJ (1992) A multiple-start monte-carlo docking method. Proteins-Struct Funct Genet 13:206–222

    CAS  Google Scholar 

  95. McMartin C, Bohacek RS (1997) QXP: powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 11:333–344

    CAS  Google Scholar 

  96. Holland HJ (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press

    Google Scholar 

  97. Clark KP, Ajay J (1995) Flexible ligand docking without parameter adjustment across 4 ligand-receptor complexes, J Comput Chem 16:1210–1226

    Google Scholar 

  98. Taylor JS, Burnett RM (2000) DARWIN: a program for docking flexible molecules. Proteins-Struct Funct Genet 41:173–191

    CAS  Google Scholar 

  99. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    CAS  Google Scholar 

  100. Solis FJ, Wets RJB (1981) Minimization by random search techniques. Math Oper Res 6:19–30

    Google Scholar 

  101. Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    CAS  Google Scholar 

  102. Jiang X, Kumar K, Hu X, Wallqvist A, Reifman J (2008) DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0. Chem Cent J 2(1):1–7

    Google Scholar 

  103. Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J (2008) DOVIS: an implementation for high-throughput virtual screening using AutoDock. BMC Bioinform 9(1):126

    Google Scholar 

  104. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359

    Google Scholar 

  105. Glover F (1986) Future paths for integer programming and links to artificial-intelligence. Comput Oper Res 13:533–549

    Google Scholar 

  106. Murray CW, Baxter CA, Frenkel AD (1999) The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J Comput Aided Mol Des 13:547–562

    CAS  Google Scholar 

  107. Eberhart RC, Shi YH (2004) Special issue on particle swarm optimization. IEEE Trans Evol Comput 8:201–203

    Google Scholar 

  108. Namasivayam V, Guenther R (2007) PSO@AUTODOCK: a fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des 70:475–484

    CAS  Google Scholar 

  109. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8:204–210

    Google Scholar 

  110. Norberg J, Nilsson L (2003) Advances in biomolecular simulations: methodology and recent applications. Q Rev Biophys 36:257–306

    CAS  Google Scholar 

  111. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    CAS  Google Scholar 

  112. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins-Struct Funct Genet 46:34–40

    CAS  Google Scholar 

  113. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M (2004) Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem 47:45–55

    CAS  Google Scholar 

  114. Cerqueira NM, Bras NF, Fernandes PA, Ramos MJ (2009) MADAMM: a multistaged docking with an automated molecular modeling protocol. Proteins-Struct Funct Bioinform 74:192–206

    CAS  Google Scholar 

  115. Biesiada J, Porollo A, Velayutham P, Kouril M, Meller J (2011) Survey of public domain software for docking simulations and virtual screening. Hum Genomics 5:497–505

    CAS  Google Scholar 

  116. B-Rao C, Subramanian J, Sharma SD (2009) Managing protein flexibility in docking and its applications. Drug Discov Today 14:394–400

    CAS  Google Scholar 

  117. Lill MA (2011) Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry 50:6157–6169

    CAS  Google Scholar 

  118. Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81:41–49

    CAS  Google Scholar 

  119. Durrant JD, McCammon JA (2010) Computer-aided drug-discovery techniques that account for receptor flexibility. Curr Opin Pharmacol 10:770–774

    CAS  Google Scholar 

  120. Oshiro CM, Kuntz ID, Dixon JS (1995) Flexible ligand docking using a genetic algorithm. J Comput Aided Mol Des 9:113–130

    CAS  Google Scholar 

  121. Desmet J, Demaeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542

    CAS  Google Scholar 

  122. Leach AR (1994) Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol 235:345–356

    CAS  Google Scholar 

  123. Koska J, Spassov VZ, Maynard AJ, Yan L, Austin N, Flook PK, Venkatachalam CM (2008) Fully automated molecular mechanics based induced fit protein-ligand docking method. J Chem Inf Model 48:1965–1973

    CAS  Google Scholar 

  124. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins-Struct Funct Bioinform 65:538–548

    CAS  Google Scholar 

  125. Kokh DB, Wenzel W (2008) Flexible side chain models improve enrichment rates in in silico screening. J Med Chem 51:5919–5931

    CAS  Google Scholar 

  126. Korb O, Olsson TSG, Bowden SJ, Hall RJ, Verdonk ML, Liebeschuetz JW, Cole JC (2012) Potential and limitations of ensemble docking. J Chem Inf Model 52:1262–1274

    CAS  Google Scholar 

  127. Knegtel RMA, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266:424–440

    CAS  Google Scholar 

  128. Jiang F, Kim SH (1991) Soft docking—matching of molecular-surface cubes. J Mol Biol 219:79–102

    CAS  Google Scholar 

  129. Ferrari AM, Wei BQQ, Costantino L, Shoichet BK (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47:5076–5084

    CAS  Google Scholar 

  130. Bras NF, Fernandes PA, Ramos MJ (2014) Molecular dynamics studies on both bound and unbound renin protease. J Biomol Struct Dyn 32:351–363

    CAS  Google Scholar 

  131. Carlson HA (2002) Protein flexibility is an important component of structure-based drug discovery. Curr Pharm Des 8:1571–1578

    CAS  Google Scholar 

  132. May A, Zacharias M (2008) Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med Chem 51:3499–3506

    CAS  Google Scholar 

  133. May A, Zacharias M (2008) Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein-protein docking. Proteins-Struct Funct Bioinform 70:794–809

    CAS  Google Scholar 

  134. Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–225

    CAS  Google Scholar 

  135. Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49:716–725

    CAS  Google Scholar 

  136. Cavasotto CN, Kovacs JA, Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127:9632–9640

    CAS  Google Scholar 

  137. Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164

    CAS  Google Scholar 

  138. Yuriev E, Ramsland PA (2013) Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit 26:215–239

    CAS  Google Scholar 

  139. Makino S, Kuntz ID (1997) Automated flexible ligand docking method and its application for database search. J Comput Chem 18:1812–1825

    CAS  Google Scholar 

  140. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    CAS  Google Scholar 

  141. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    CAS  Google Scholar 

  142. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins-Struct Funct Bioinform 37:228–241

    CAS  Google Scholar 

  143. Morris GM, Goodsell DS, Huey R, Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J Comput Aided Mol Des 10:293–304

    CAS  Google Scholar 

  144. Morris GM, Huey R, Olson AJ (2008) Using AutoDock for ligand-receptor docking. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis … [et al.] (Chapter 8, Unit 8 14)

    Google Scholar 

  145. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force-field for simulations of proteins and nucleic-acids. J Comput Chem 7:230–252

    CAS  Google Scholar 

  146. Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13:505–524

    CAS  Google Scholar 

  147. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    CAS  Google Scholar 

  148. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    CAS  Google Scholar 

  149. Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor Ag-1343 by Hiv-1 protease—conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324

    CAS  Google Scholar 

  150. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445

    CAS  Google Scholar 

  151. Murray CW, Auton TR, Eldridge MD (1998) Empirical scoring functions. II. The testing of an empirical scoring function for the prediction of ligand-receptor binding affinities and the use of Bayesian regression to improve the quality of the model. J Comput Aided Mol Des 12:503–519

    CAS  Google Scholar 

  152. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    CAS  Google Scholar 

  153. Wang RX, Liu L, Lai LH, Tang YQ (1998) SCORE: a new empirical method for estimating the binding affinity of a protein-ligand complex. J Mol Model 4:379–394

    CAS  Google Scholar 

  154. Rognan D, Lauemoller SL, Holm A, Buus S, Tschinke V (1999) Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins. J Med Chem 42:4650–4658

    CAS  Google Scholar 

  155. Wang RX, Lai LH, Wang SM (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aid Mol Des 16:11–26

    CAS  Google Scholar 

  156. Bohm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243–256

    CAS  Google Scholar 

  157. Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    CAS  Google Scholar 

  158. Vaque M, Ardrevol A, Blade C, Salvado MJ, Blay M, Fernandez-Larrea J, Arola L, Pujadas G (2008) Protein-ligand docking: a review of recent advances and future perspectives. Curr Pharm Anal 4:1–19

    CAS  Google Scholar 

  159. Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein-ligand interactions: I. Derivation of interaction potentials. J Comput Chem 27:1866–1875

    CAS  Google Scholar 

  160. Muegge I (2006) PMF scoring revisited. J Med Chem 49:5895–5902

    CAS  Google Scholar 

  161. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions: a simplified potential approach. J Med Chem 42:791–804

    CAS  Google Scholar 

  162. Muegge I (2001) Effect of ligand volume correction on PMF scoring. J Comput Chem 22:418–425

    CAS  Google Scholar 

  163. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295:337–356

    CAS  Google Scholar 

  164. Velec HFG, Gohlke H, Klebe G (2005) DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J Med Chem 48:6296–6303

    CAS  Google Scholar 

  165. Ishchenko AV, Shakhnovich EI (2002) SMall molecule growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein-ligand interactions. J Med Chem 45:2770–2780

    CAS  Google Scholar 

  166. Mitchell JBO, Laskowski RA, Alex A, Forster MJ, Thornton JM (1999) BLEEP—potential of mean force describing protein-ligand interactions: II. Calculation of binding energies and comparison with experimental data. J Comput Chem 20:1177–1185

    CAS  Google Scholar 

  167. Mitchell JBO, Laskowski RA, Alex A, Thornton JM (1999) BLEEP—potential of mean force describing protein-ligand interactions: I. Generating potential. J Comput Chem 20:1165–1176

    CAS  Google Scholar 

  168. Yang CY, Wang RX, Wang SM (2006) M-score: a knowledge-based potential scoring function accounting for protein atom mobility. J Med Chem 49:5903–5911

    CAS  Google Scholar 

  169. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  170. Coupez B, Lewis RA (2006) Docking and scoring–theoretically easy, practically impossible? Curr Med Chem 13:2995–3003

    CAS  Google Scholar 

  171. Baber JC, William AS, Gao YH, Feher M (2006) The use of consensus scoring in ligand-based virtual screening. J Chem Inf Model 46:277–288

    CAS  Google Scholar 

  172. Betzi S, Suhre K, Chetrit B, Guerlesquin F, Morelli X (2006) GFscore: a general nonlinear consensus scoring function for high-throughput docking. J Chem Inf Model 46:1704–1712

    CAS  Google Scholar 

  173. Wang RX, Lu YP, Wang SM (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    CAS  Google Scholar 

  174. Charifson PS, Corkery JJ, Murcko MA, Walters WP (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42:5100–5109

    CAS  Google Scholar 

  175. Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767

    CAS  Google Scholar 

  176. Halperin I, Ma BY, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins-Struct Funct Genet 47:409–443

    CAS  Google Scholar 

  177. Feher M (2006) Consensus scoring for protein-ligand interactions. Drug Discov Today 11:421–428

    CAS  Google Scholar 

  178. Ouyang X, Zhou S, Su CTT, Ge Z, Li R, Kwoh CK (2013) CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem 34:326–336

    CAS  Google Scholar 

  179. Schroeder J, Klinger A, Oellien F, Marhoefer RJ, Duszenko M, Selzer PM (2013) Docking-based virtual screening of covalently binding ligands: an orthogonal lead discovery approach. J Med Chem 56:1478–1490

    CAS  Google Scholar 

  180. Singh J, Petter RC, Baillie TA, Whitty A (2011) The resurgence of covalent drugs. Nat Rev Drug Discov 10:307–317

    CAS  Google Scholar 

  181. Potashman MH, Duggan ME (2009) Covalent modifiers: an orthogonal approach to drug design. J Med Chem 52:1231–1246

    CAS  Google Scholar 

  182. Smith AJT, Zhang X, Leach AG, Houk KN (2009) Beyond picomolar affinities: quantitative aspects of noncovalent and covalent binding of drugs to proteins. J Med Chem 52:225–233

    CAS  Google Scholar 

  183. Ouyang XC, Zhou S, Ge ZM, Li RT, Kwoh CK (2013) CovalentDock Cloud: a web server for automated covalent docking. Nucleic Acids Res 41:W329–W332

    Google Scholar 

  184. Yuriev E, Agostino M, Ramsland PA (2011) Challenges and advances in computational docking: 2009 in review. J Mol Recognit 24:149–164

    CAS  Google Scholar 

  185. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  186. Lu Y, Wang R, Yang C-Y, Wang S (2007) Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes. J Chem Inf Model 47:668–675

    CAS  Google Scholar 

  187. Lemmon G, Meiler J (2013) Towards ligand docking including explicit interface water molecules, Plos One 8(6):e67536

    Google Scholar 

  188. Roberts BC, Mancera RL (2008) Ligand-protein docking with water molecules. J Chem Inf Model 48:397–408

    CAS  Google Scholar 

  189. Huang N, Shoichet BK (2008) Exploiting ordered waters in molecular docking. J Med Chem 51:4862–4865

    CAS  Google Scholar 

  190. Wong SE, Lightstone FC (2011) Accounting for water molecules in drug design. Expert Opin Drug Discov 6:65–74

    CAS  Google Scholar 

  191. de Graaf C, Pospisil P, Pos W, Folkers G, Vermeulen NPE (2005) Binding mode prediction of cytochrome P450 and thymidine kinase protein-ligand complexes by consideration of water and rescoring in automated docking. J Med Chem 48:2308–2318

    Google Scholar 

  192. Thilagavathi R, Mancera RL (2010) Ligand-protein cross-docking with water molecules. J Chem Inf Model 50:415–421

    CAS  Google Scholar 

  193. Elokely KM, Doerksen RJ (2013) Docking challenge: protein sampling and molecular docking performance. J Chem Inf Model 53:1934–1945

    CAS  Google Scholar 

  194. Sousa SF, Ribeiro AJM, Coimbra JTS, Neves RPP, Martins SA, Moorthy NSHN, Fernandes PA, Ramos MJ (2013) Protein-ligand docking in the new millennium—a retrospective of 10 years in the field. Curr Med Chem 20:2296–2314

    CAS  Google Scholar 

  195. Garcia-Sosa AT, Mancera RL, Dean PM (2003) WaterScore: a novel method for distinguishing between bound and displaceable water molecules in the crystal structure of the binding site of protein-ligand complexes. J Mol Model 9:172–182

    CAS  Google Scholar 

  196. Amadasi A, Spyrakis F, Cozzini P, Abraham DJ, Kellogg GE, Mozzarelli A (2006) Mapping the energetics of water-protein and water-ligand interactions with the “natural” HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. J Mol Biol 358:289–309

    CAS  Google Scholar 

  197. Raymer ML, Sanschagrin PC, Punch WF, Venkataraman S, Goodman ED, Kuhn LA (1997) Predicting conserved water-mediated and polar ligand interactions in proteins using a K-nearest-neighbors genetic algorithm. J Mol Biol 265:445–464

    CAS  Google Scholar 

  198. Michel J, Tirado-Rives J, Jorgensen WL (2009) Prediction of the water content in protein binding sites. J Phys Chem B 113:13337–13346

    CAS  Google Scholar 

  199. Pitt WR, Goodfellow JM (1991) Modeling of solvent positions around polar groups in proteins. Protein Eng 4:531–537

    CAS  Google Scholar 

  200. Kortvelyesi T, Dennis S, Silberstein M, Brown L, Vajda S (2003) Algorithms for computational solvent mapping of proteins. Proteins-Struct Funct Genet 51:340–351

    CAS  Google Scholar 

  201. Miranker A, Karplus M (1991) Functionality maps of binding-sites—a multiple copy simultaneous search method. Proteins-Struct Funct Genet 11:29–34

    CAS  Google Scholar 

  202. Verdonk ML, Cole JC, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289:1093–1108

    CAS  Google Scholar 

  203. Goodford PJ (1985) A computational-procedure for determining energetically favorable binding-sites on biologically important macromolecules. J Med Chem 28:849–857

    CAS  Google Scholar 

  204. Salaniwal S, Manas ES, Alvarez JC, Unwalla RJ (2007) Critical evaluation of methods to incorporate entropy loss upon binding in high-throughput docking. Proteins-Struct Funct Bioinform 66:422–435

    CAS  Google Scholar 

  205. Murray CW, Verdonk ML (2002) The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J Comput Aided Mol Des 16:741–753

    CAS  Google Scholar 

  206. Finkelstein AV, Janin J (1989) The price of lost freedom—entropy of bimolecular complex-formation. Protein Eng 3:1–3

    CAS  Google Scholar 

  207. Huang S-Y, Zou X (2010) Inclusion of solvation and entropy in the knowledge-based scoring function for protein-ligand interactions. J Chem Inf Model 50:262–273

    CAS  Google Scholar 

  208. Kongsted J, Ryde U (2009) An improved method to predict the entropy term with the MM/PBSA approach. J Comput Aided Mol Des 23:63–71

    CAS  Google Scholar 

  209. Bradshaw RT, Patel BH, Tate EW, Leatherbarrow RJ, Gould IR (2011) Comparing experimental and computational alanine scanning techniques for probing a prototypical protein-protein interaction. Protein Eng Des Sel 24:197–207

    CAS  Google Scholar 

  210. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    CAS  Google Scholar 

  211. Baron R, Huenenberger PH, McCammon JA (2009) Absolute single-molecule entropies from quasi-harmonic analysis of microsecond molecular dynamics: correction terms and convergence properties. J Chem Theory Comput 5:3150–3160

    CAS  Google Scholar 

  212. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, DNA helices. J Am Chem Soc 120:9401–9409

    CAS  Google Scholar 

  213. Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. J Comput Chem 25:238–250

    CAS  Google Scholar 

  214. van der Vegt NFA, van Gunsteren WF (2004) Entropic contributions in cosolvent binding to hydrophobic solutes in water. J Phys Chem B 108:1056–1064

    Google Scholar 

  215. Tidor B, Karplus M (1994) The contribution of vibrational entropy to molecular association—the dimerization of insulin. J Mol Biol 238:405–414

    CAS  Google Scholar 

  216. Hermans J, Wang L (1997) Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding. Application to a complex of benzene and mutant T4 lysozyme. J Am Chem Soc 119:2707–2714

    CAS  Google Scholar 

  217. Amzel LM (1997) Loss of translational entropy in binding, folding, and catalysis. Proteins-Struct Funct Genet 28:144–149

    CAS  Google Scholar 

  218. Lee J, Seok C (2008) A statistical rescoring scheme for protein-ligand docking: consideration of entropic effect. Proteins-Struct Funct Bioinform 70:1074–1083

    CAS  Google Scholar 

  219. Ruvinsky AM (2007) Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions. J Comput Chem 28:1364–1372

    CAS  Google Scholar 

  220. Ruvinsky AM, Kozintsev AV (2005) New and fast statistical-thermodynamic method for computation of protein-ligand binding entropy substantially improves docking accuracy. J Comput Chem 26:1089–1095

    CAS  Google Scholar 

  221. Xiang ZX, Soto CS, Honig B (2002) Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. Proc Natl Acad Sci USA 99:7432–7437

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded by FEDER/COMPETE and Fundação para a Ciência e a Tecnologia through projects EXCL/QEQ-COM/0394/2012, EXPL/QEQ-COM/1125/2013 and PEst-C/EQB/LA0006/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brás, N.F., Cerqueira, N.M.F.S.A., Sousa, S.F., Fernandes, P.A., Ramos, M.J. (2014). Protein Ligand Docking in Drug Discovery . In: Náray-Szabó, G. (eds) Protein Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-09976-7_11

Download citation

Publish with us

Policies and ethics