Skip to main content

Quantization

  • Chapter
  • First Online:
Quantum Theory
  • 2832 Accesses

Abstract

In this chapter we discuss the general notion of quantization. It has a range of meanings; the first and most obvious among those is the historic one. In the beginning of the twentieth century theoretical physicists struggled with serious fundamental problems in what we now call classical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. A. A114, 243–265 (1927). Available at: http://rspa.royalsocietypublishing.org/content/114/767/243.full.pdf or http://hermes.ffn.ub.es/luisnavarro/nuevo_maletin/Dirac_QED_1927.pdf

  2. Born, M., Jordan, P.: Zur Quantenmechanik. Z. Phys. 34, 858–888 (1925)

    Google Scholar 

  3. Heisenberg, W.: Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. für Phys. 33, 879–893 (1925) (An English translation of these two fundamental articles is in Van der Waerden, see Chap. 3, Ref. [4]. The 1967 North-Holland edition is available at: https://ia601208.us.archive.org/14/items/SourcesOfQuantumMechanics/VanDerWaerden-SourcesOfQuantumMechanics.pdf.)

  4. Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Phys. 46, 1–46 (1927)

    Google Scholar 

  5. Weyl, H.: The Theory of Groups and Quantum Mechanics (Translated from the 2nd revised German edition 1931 of Gruppentheorie und Quantenmechanik) Dover 2003. Translated from the second revised edition as: Theory of Groups and Quantum Mechanics. Dover 1950 (The English translation is available at: https://ia600807.us.archive.org/20/items/ost-chemistry-quantumtheoryofa029235mbp/quantumtheoryofa029235mbp.pdf.)

  6. Scholz, E.: Weyl entering the ‘new’ quantum mechanics discourse. Contribution to the Conference “History of Quantum Physics”, Berlin, July 2–6, 2007. Accessible at: http://www2.math.uni-wuppertal.de/~scholz/preprints/HQ_1_ES.pdf

  7. Weyl, H.: Raum, Zeit, Materie. Springer, various editions. Translated as Space, Time, Matter. Dover 1952 (Weyl’s collected works were published by Springer in 1968)

    Google Scholar 

  8. Segal, I.E.: Representations of the canonical commutation relations. Lectures given at the 1965 Cargèse Summer School Notes by P.J.M. Bongaarts and Th. Niemeijer. In “Applications of Mathematics to Problems in Theoretical Physics”, pp. 107–170. Maurice Lévy, F. Lurcat, Editors Gordon and Breach 1967

    Google Scholar 

  9. Dirac, P.A.M.: [13] The Fundamental Equations of Quantum Mechanics. Proceedings of the Royal Society London A109, 642–653 (1925). Available at: http://rspa.royalsocietypublishing.org/content/109/752/642.full.pdf+html

  10. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. van Hove, L.: Sur le problème des relations entre les transformations unitaires de la mécanique quantique et les transformations canoniques de la mécanique classique. Acad. Roy. Belgique, Bull. Cl. Sci. 37, 610–620 (1951)

    Google Scholar 

  12. Rieffel, M.A.: Deformation Quantization and Operator Algebras. Proceedings of Symposia in Pure Mathematics 51, 411–423 (1990). Available at: http://math.berkeley.edu/~rieffel/papers/deformation.pdf

  13. Rieffel, M.A.: Deformation Quantization and \(C^*\)-Algebras. Contemporary Mathematics 167, 67–97 (1994). Available at: http://math.berkeley.edu/~rieffel/papers/quantization.pdf

  14. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A.,Sternheimer, D.: Deformation theory and quantization I. Deformation of symplectic structures. Ann. Physics 111, 61–110 (1978) II. Physical applications. Ann. Physics 111, 111–151 (1978)

    Google Scholar 

  15. Fedosov, B.V.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40, 213–238 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003). Available at: http://label2.ist.utl.pt/vilela/Papers/kontsevich.pdf The preprint version is available at: http://arxiv.org/pdf/q-alg/9709040v1.pdf

  17. Gerstenhaber, M.: On the deformation of rings and algebras I. Ann. Math. 79, 59–103 (1963)

    Google Scholar 

  18. Gerstenhaber, M.: On the deformation of rings and algebras II. Ann. Math. 84, 1–19 (1966)

    Google Scholar 

  19. Feynman, R.P.: Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Modern Phys. 20, 367–387 (1948). Available at: http://web.ihep.su/dbserv/compas/src/feynman48c/eng.pdf

  20. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill 1965, Dover 2012

    Google Scholar 

  21. Cameron, R.H.: A family of integrals serving to connect the Wiener and Feynman integrals. J. Math. Phys. 39, 126–140 (1960)

    MATH  Google Scholar 

  22. Dirac, P.A.M.: The Lagrangian in quantum mechanics. Phys. Zeitschr. Sowjetunion 3, 64–72 (1933). Reprinted in Quantum Electrodynamics. J. Schwinger (ed.) Dover 1958. Available at http://www.ifi.unicamp.br/~cabrera/teaching/aula%2015%202010s1.pdf

  23. Reed, M., Simon, B.: Methods of Mathematical Physics. I: Functional Analysis Academic Press 1972 (This book is because of its readability our main reference for this chapter. A text book on functional analysis, with the theory of operators in Hilbert space as its central topic, especially written for applications in mathematical physics. It is the first of a series of four books by the same authors. The other volumes are more specialized, but contain nevertheless useful material, in particular II and IV.)

    Google Scholar 

  24. Trotter, H.F.: On the product of Semi-Groups of Operators. Proc. Amer. Math. Soc. 10, 545–551 (1959). Available at: http://www.ams.org/journals/proc/1959-010-04/S0002-9939-1959-0108732-6/S0002-9939-1959-0108732-6.pdf

  25. Nelson, E.: Feynman integral and the Schrödinger equation. J. Math. Phys. 5, 332–343 (1964)

    Article  ADS  MATH  Google Scholar 

  26. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (English translation: On the Motion Required by the Molecular Kinetic Theory of Heat of Small Particles Suspended in a Stationary Liquid. Ann. Phys. 17, 549–560 (1905). Available at: http://www.pitt.edu/~jdnorton/lectures/Rotman_Summer_School_2013/Einstein_1905_docs/Einstein_Brownian_English.pdf.)

  27. Perrin, J.: Mouvement brownien et realité moléculaire. Annales de Chimie et de Physique 18, 5–114 (1909). English translation: Brownian Movement and Molecular Reality. Taylor and Francis 1910

    Google Scholar 

  28. Wiener, N.: Differential space. J. Math. Phys. 2, 132–174 (1923). Available at: http://math.iisc.ernet.in/~manju/Brownian/Differential%20Space.PDF

  29. Kac, M.: On Distributions of Certain Wiener Functionals. Trans. Amer. Math. Soc. 65, 1–13 (1949). Available at: http://www.ams.org/journals/tran/1949-065-01/S0002-9947-1949-0027960-X/S0002-99471949-0027960-X.pdf. Mark Kac did mention that he had been influenced by Feynman (Besides the book by Feynman and Hibbs [20], which has at now mainly historical value, there are many competent modern books on Feynman’s path integral, for example.)

  30. Bongaarts, P.J.M., Pijls, H.G.J.: Almost commutative algebra and differential calculus on the quantum hyperplane. J. Math. Phys. 35, 959–970 (1994). Available at: http://dare.uva.nl/document/30673

  31. Rogers, A.: Supermanifolds. Theory and Application. World Scientific (2007)

    Google Scholar 

  32. DeWitt, B.: Supermanifolds. 2nd Edition. Cambridge (1992)

    Google Scholar 

  33. Tuynman, G.M.: Supermanifolds and Supergroups. Basic Theory. Kluwer, Boston (2004). There is a recent paperback edition published by Springer in 2012

    Google Scholar 

  34. Leites, D.A.: Introduction to the theory of super manifolds. Russ. Math. Surveys 35, 1–64 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Berezin, F.A.: Introduction to Superanalysis. Reidel, New York (1987)

    Book  MATH  Google Scholar 

  36. Kostant, B.: Graded manifolds, graded Lie theory and pre quantization. In: Bleuler K., Reetz A. (eds.) Differential Geometric Methods in Mathematical Physics. Lecture Notes in Mathematics vol. 570, pp. 177–306. Springer (1977)

    Google Scholar 

  37. Batchelor, M.: Two approaches to supermanifolds. Trans. Amer. Math. Soc. 258, 257–270 (1980). Available at: http://www.ams.org/journals/tran/1980-258-01/S0002-9947-1980-0554332-9/S0002-9947-1980-0554332-9.pdf

  38. Batchelor, M.: Graded manifolds and supermanifolds. In: Clarke C.J.S., Rosenblum A., Seifert H.J. (eds.) Mathematical Aspects of Superspace. Reidel (1984)

    Google Scholar 

  39. Martin, J.L.: Generalized Classical Dynamics, and the “Classical Analogue” of a Fermi Oscillator. Proc. R. Soc. Lond. A251, 536–542 (1959)

    Google Scholar 

  40. Casalbuoni, R.: On the quantization of systems with anticommuting variables. Nuovo Cim. 33A, 115–125 (1976)

    Google Scholar 

  41. Berezin, F.A., Marinov, M.S.: Particle spin dynamics as the Grassmann variant of classical mechanics. Ann. Phys. 104, 336–362 (1977)

    Article  ADS  MATH  Google Scholar 

  42. Berezin, F.A.: The Method of Second Quantization. Academic Press, New York (1966)

    MATH  Google Scholar 

  43. Schwinger, J.: On the Green’s Functions of Quantized Fields. I. Proc. Natl. Acad. SCI. USA 37, 452–455 (1951). Available at: http://www.pnas.org/content/37/7/452.long

  44. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley (1981), Dover 2005

    Google Scholar 

  45. Roepstorff, G.: Path Integral Approach to Quantum Physics. An Introduction. Springer, original edition 1994, paperback edition 1996

    Google Scholar 

  46. Chaichian, M., Demichev, A.: Path Integrals in Physics I. Stochastic Processes and Quantum Mechanics. Institute of Physics (2001)

    Google Scholar 

  47. Esposito, C.: Formality Theory: From Poisson Structures to Deformation Quantization. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bongaarts .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bongaarts, P. (2015). Quantization. In: Quantum Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-09561-5_13

Download citation

Publish with us

Policies and ethics