Skip to main content

Neuromechanical Simulation of an Inter-leg Controller for Tetrapod Coordination

  • Conference paper
Book cover Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

Abstract

A biologically inspired control system has been developed for coordinating a tetrapod walking gait in the sagittal plane. The controller is built with biologically based neurons and synapses, and connections are based on data from literature where available. It is applied to a simplified, planar biomechanical model of a rat with 14 joints with an antagonistic pair of Hill muscle models per joint. The controller generates tension in the muscles through activation of simulated motoneurons. Though significant portions of the controller are based on cat research, this model is capable of reproducing hind leg behavior observed in walking rats. Additionally, the applied inter-leg coordination pathways between fore and hind legs are capable of creating and maintaining coordination in this rat model. Ablation tests of the different connections involved in coordination indicate the role of each connection in providing coordination with low variability.

This work was supported by DARPA M3 grant DI-MISC-81612A

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Büschges, A., Schmitz, J., Bässler, U.: Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. Journal of Experimental Biology 198(Pt. 2), 435–456 (1995)

    Google Scholar 

  2. Brown, T.G.: On the Nature of the Fundamental Activity of the Nergous Centres; Together with an Analysis of the Conditioning of Rhythmic Activity in Progression, and a theory of the evolution of function in the Nervous System. Journal of Physiology - London (48), 18–46 (1914)

    Google Scholar 

  3. Pearson, K.G., Ekeberg, O., Büschges, A.: Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends in Neurosciences 29(11), 625–631 (2006)

    Article  Google Scholar 

  4. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13(1990), 15–21 (1990)

    Article  Google Scholar 

  5. Espenschied, K.S., Quinn, R.D., Chiel, H.J., Beer, R.: Leg Coordination Mechanisms in the Stick Inspect Applied to Hexapod Robot Locomotion. Adaptive Behavior 1(4), 455–468 (1993)

    Article  Google Scholar 

  6. Ekeberg, O., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Structure & Development 33(3), 287–300 (2004)

    Article  Google Scholar 

  7. Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics 107(4), 397–419 (2013)

    Article  MathSciNet  Google Scholar 

  8. Rutter, B.L., Taylor, B.K., Bender, J.A., Blümel, M., Lewinger, W.A., Ritzmann, R.E., Quinn, R.D.: Descending commands to an insect leg controller network cause smooth behavioral transitions. In: Intelligent Robots and Systems (IROS 2011) (2011)

    Google Scholar 

  9. Daun-Gruhn, S.: A mathematical modeling study of inter-segmental coordination during stick insect walking. Journal of Computational Neuroscience, 255–278 (2010)

    Google Scholar 

  10. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A Neuromechanical Simulation of Insect Walking and Transition to Turning of the Cockroach Blaberus discoidalis. Biological Cybernetics (2013)

    Google Scholar 

  11. Pearson, K.G.: Role of sensory feedback in the control of stance duration in walking cats. Brain Research Reviews 57(1), 222–227 (2008)

    Article  Google Scholar 

  12. Ekeberg, O., Pearson, K.G.: Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. Journal of Neurophysiology 94(6), 4256–4268 (2005)

    Article  Google Scholar 

  13. Harischandra, N., Ekeberg, O.: System identification of muscle-joint interactions of the cat hind limb during locomotion. Biological Cybernetics 99(2), 125–138 (2008)

    Article  MATH  Google Scholar 

  14. Bicanski, A., Ryczko, D., Knuesel, J., Harischandra, N., Charrier, V., Ekeberg, O., Cabelguen, J.M., Ijspeert, A.J.: Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics. Biological Cybernetics 107(5), 545–564 (2013)

    Article  MathSciNet  Google Scholar 

  15. McCrea, D.A., Rybak, I.A.: Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews 57(1), 134–146 (2008)

    Article  Google Scholar 

  16. Zhong, G., Shevtsova, N.A., Rybak, I.A., Harris-Warrick, R.M.: Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. The Journal of Physiology 590(Pt. 19), 4735–4759 (2012)

    Article  Google Scholar 

  17. Büschges, A., Borgmann, A.: Network modularity: back to the future in motor control. Current Biology: CB 23(20), R936–R938 (2013)

    Google Scholar 

  18. Markin, S.N., Klishko, A.N., Shevtsova, N.A., Lemay, M.A., Prilutsky, B.I., Rybak, I.A.: Afferent control of locomotor CPG: insights from a simple neuromechanical model. Annals of the New York Academy of Sciences 1198, 21–34 (2010)

    Article  Google Scholar 

  19. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. Journal of Neuroscience Methods 187(2), 280–288 (2010)

    Article  Google Scholar 

  20. Witte, H., Biltzinger, J., Hackert, R., Schilling, N., Schmidt, M., Reich, C., Fischer, M.S.: Torque patterns of the limbs of small therian mammals during locomotion on flat ground. The Journal of Experimental Biology 205(Pt. 9), 1339–1353 (2002)

    Google Scholar 

  21. Daun-Gruhn, S., Büschges, A.: From neuron to behavior: dynamic equation-based prediction of biological processes in motor control. Biological Cybernetics, 71–88 (July 2011)

    Google Scholar 

  22. Brownstone, R.M., Bui, T.V.: Spinal interneurons providing input to the final common path during locomotion. Progress in Brain Research (902), 81–95 (2010)

    Google Scholar 

  23. Fischer, M.S., Schilling, N., Schmidt, M., Haarhaus, D., Witte, H.: Basic limb kinematics of small therian mammals. The Journal of Experimental Biology 205(Pt. 9), 1315–1338 (2002)

    Google Scholar 

  24. Prochazka, A., Gillard, D., Bennett, D.J.: Positive force feedback control of muscles. Journal of Neurophysiology 77(6), 3226–3236 (1997)

    Google Scholar 

  25. McVea, D.A., Donelan, J.M., Tachibana, A., Pearson, K.G.: A role for hip position in initiating the swing-to-stance transition in walking cats. Journal of Neurophysiology 94(5), 3497–3508 (2005)

    Article  Google Scholar 

  26. Akay, T., McVea, D.A., Tachibana, A., Pearson, K.G.: Coordination of fore and hind leg stepping in cats on a transversely-split treadmill. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale 175(2), 211–222 (2006)

    Article  Google Scholar 

  27. Górska, T., Zmyslowski, W., Majczynski, H.: Overground locomotion in intact rats: interlimb coordination, support patterns and support phases duration. Acta Neurobiologiae Experimentalis 59(2), 131–144 (1999)

    Google Scholar 

  28. Cruse, H., Warnecke, H.: Coordination of the legs of a slow-walking cat. Experimental Brain Research, 147–156 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hunt, A., Schmidt, M., Fischer, M., Quinn, R.D. (2014). Neuromechanical Simulation of an Inter-leg Controller for Tetrapod Coordination. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics