Skip to main content

Regulated Exocytosis in Astrocytes is as Slow as the Metabolic Availability of Gliotransmitters: Focus on Glutamate and ATP

  • Chapter
  • First Online:
Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 11))

Abstract

It is becoming clear that astrocytes, the most abundant type of glial cells in the mammalian brain, share many properties with neurons. One such property involves vesicles, which play a key role in cell-to-cell signaling. On the one hand, vesicles determine the signaling potential by delivering various receptors and transporters to the plasma membrane by vesicular exocytosis. On the other hand, vesicles are used in astrocytes for the release of vesicle-laden chemical messengers. This chapter compares the properties of Ca2+-dependent fusion of the vesicle membrane with the plasma membrane in astrocytes and in neurons, monitored by membrane capacitance techniques. Moreover, we focus on membrane-bound vesicles that store gliotransmitters, glutamate, and adenosine 5′-triphosphate (ATP), to learn why regulated exocytosis in astrocytes is orders of magnitude slower than in neurons and the fact that these signaling molecules are also metabolites. The relatively slow kinetics of regulated exocytosis in astrocytes likely involves vesicle dynamics regulation and mechanisms governing the merger of the vesicle membrane with the plasma membrane, but may also depend on the availability of ATP and glutamate in metabolic pathways for packaging into vesicles via specific vesicle transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott N, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    PubMed  CAS  Google Scholar 

  • Almqvist J, Huang Y, Laaksonen A, Wang D, Hovmöller S (2007) Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. Protein Sci 16:1819–1829

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anderson C, Nedergaard M (2003) Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 26:340–344; author reply 344–345

    PubMed  CAS  Google Scholar 

  • Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423:643–647

    PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    PubMed  CAS  Google Scholar 

  • Axelrod J (1974) Neurotransmitters. Sci Am 230:59–71

    PubMed  CAS  Google Scholar 

  • Barg S, Ma X, Eliasson L, Galvanovskis J, Göpel SO, Obermüller S, Platzer J, Renström E, Trus M, Atlas D, Striessnig J, Rorsman P (2001) Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells. Biophys J 81:3308–3323

    PubMed  CAS  PubMed Central  Google Scholar 

  • Belai A, Burnstock G (2000) Pattern of distribution and co-localization of NOS and ATP in the myenteric plexus of human fetal stomach and intestine. Neuroreport 11:5–8

    PubMed  CAS  Google Scholar 

  • Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29:681–690

    PubMed  CAS  Google Scholar 

  • Bezzi P (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    PubMed  CAS  Google Scholar 

  • Blum AE, Walsh BC, Dubyak GR (2010) Extracellular osmolarity modulates G protein-coupled receptor-dependent ATP release from 1321N1 astrocytoma cells. Am J Physiol Cell Physiol 298:C386–C396

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38:900–908

    PubMed  CAS  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JG (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957

    PubMed  CAS  Google Scholar 

  • Brown AM, Ransom BR (2007) Astrocyte glycogen and brain energy metabolism. Glia 55: 1263–1271

    PubMed  Google Scholar 

  • Burke NV, Han W, Li D, Takimoto K, Watkins SC, Levitan ES (1997) Neuronal peptide release is limited by secretory granule mobility. Neuron 19:1095–1102

    PubMed  CAS  Google Scholar 

  • Burnstock G (1995) Current state of purinoceptor research. Pharm Acta Helv 69:231–242

    PubMed  CAS  Google Scholar 

  • Calegari F, Coco S, Taverna E, Bassetti M, Verderio C, Corradi N, Matteoli M, Rosa P (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274: 22539–22547

    PubMed  CAS  Google Scholar 

  • Chen X, Wang L, Zhou Y, Zheng LH, Zhou Z (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25:9236–9243

    PubMed  CAS  Google Scholar 

  • Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    PubMed  CAS  Google Scholar 

  • Cooper GM (2000) The origin and evolution of cells. Sunderland, Massachusetts

    Google Scholar 

  • Coorssen JR, Zorec R (2012) Regulated exocytosis per partes. Cell Calcium 52:191–195

    PubMed  CAS  Google Scholar 

  • Crippa D, Schenk U, Francolini M, Rosa P, Verderio C, Zonta M, Pozzan T, Matteoli M, Carmignoto G (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–582

    PubMed  CAS  PubMed Central  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    PubMed  CAS  Google Scholar 

  • De Keyser J, Zeinstra E, Frohman E (2003) Are astrocytes central players in the pathophysiology of multiple sclerosis? Arch Neurol 60:132–136

    PubMed  Google Scholar 

  • Dienel GA, Cruz NF (2006) Astrocyte activation in working brain: energy supplied by minor substrates. Neurochem Int 48:586–595

    PubMed  CAS  Google Scholar 

  • Domingues AM, Taylor M, Fern R (2010) Glia as transmitter sources and sensors in health and disease. Neurochem Int 57:359–366

    PubMed  CAS  Google Scholar 

  • Dong Y, Benveniste E (2001) Immune function of astrocytes. Glia 36:180–190

    PubMed  CAS  Google Scholar 

  • Duncan RR, Greaves J, Wiegand UK, Matskevich I, Bodammer G, Apps DK, Shipston MJ, Chow RH (2003) Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 422:176–180

    PubMed  CAS  Google Scholar 

  • Fillenz M, Lowry JP, Boutelle MG, Fray AE (1999) The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol Scand 167:275–284

    PubMed  CAS  Google Scholar 

  • Gandhi GK, Cruz NF, Ball KK, Dienel GA (2009) Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem 111:522–536

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gasparini S, Saviane C, Voronin LL, Cherubini E (2000) Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? Proc Natl Acad Sci U S A 97:9741–9746

    PubMed  CAS  PubMed Central  Google Scholar 

  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Südhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    PubMed  CAS  Google Scholar 

  • Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85: 3326–3333

    PubMed  CAS  Google Scholar 

  • Gordon G, Mulligan S, MacVicar B (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221

    PubMed  Google Scholar 

  • Guček A, Vardjan N, Zorec R (2012) Exocytosis in astrocytes: transmitter release and membrane signal regulation. Neurochem Res 37:2351–2363

    PubMed  Google Scholar 

  • Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    PubMed  CAS  Google Scholar 

  • Haydon P (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    PubMed  CAS  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Heinemann C, Neher E, Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371:513–515

    PubMed  CAS  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    PubMed  CAS  Google Scholar 

  • Henke BR, Sparks SM (2006) Glycogen phosphorylase inhibitors. Mini Rev Med Chem 6:845–857

    PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    PubMed  CAS  Google Scholar 

  • Hertz L, Xu J, Peng L (2014) Glycogenolysis and purinergic signaling. In: Parpura V (ed) Glutamate and ATP at the interface of metabolism and signaling in the brain, vol 11, Advances in neurobiology. Springer, New York (In Press)

    Google Scholar 

  • Hines DJ, Haydon PG (2013) Inhibition of a SNARE-sensitive pathway in astrocytes attenuates damage following stroke. J Neurosci 33:4234–4240

    PubMed  CAS  PubMed Central  Google Scholar 

  • Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y, Koizumi S (2013) Microglia release ATP by exocytosis. Glia 61(8):1320–1330

    PubMed  Google Scholar 

  • Jahn R, Südhof T (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    PubMed  CAS  Google Scholar 

  • Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci U S A 104:14151–14156

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jean Y, Lercher L, Dreyfus C (2008) Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol 4:35–42

    PubMed  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G, Liu F (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66:676–684

    PubMed  CAS  Google Scholar 

  • Jorgacevski J, Potokar M, Grilc S, Kreft M, Liu W, Barclay JW, Bückers J, Medda R, Hell SW, Parpura V, Burgoyne RD, Zorec R (2011) Munc18-1 tuning of vesicle merger and fusion pore properties. J Neurosci 31:9055–9066

    PubMed  CAS  Google Scholar 

  • Ke C, Poon WS, Ng HK, Pang JC, Chan Y (2001) Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Lett 301:21–24

    PubMed  CAS  Google Scholar 

  • Kordas M, Zorec R (1984) The voltage and temperature dependence of the end-plate current in frog skeletal muscle. Pflugers Arch 401:408–413

    PubMed  CAS  Google Scholar 

  • Kreft M, Krizaj D, Grilc S, Zorec R (2003a) Properties of exocytotic response in vertebrate photoreceptors. J Neurophysiol 90:218–225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kreft M, Kuster V, Grilc S, Rupnik M, Milisav I, Zorec R (2003b) Synaptotagmin I increases the probability of vesicle fusion at low [Ca2+] in pituitary cells. Am J Physiol Cell Physiol 284:C547–C554

    PubMed  CAS  Google Scholar 

  • Kreft M, Milisav I, Potokar M, Zorec R (2004a) Automated high through-put colocalization analysis of multichannel confocal images. Comput Methods Programs Biomed 74:63–67

    PubMed  CAS  Google Scholar 

  • Kreft M, Stenovec M, Rupnik M, Grilc S, Krzan M, Potokar M, Pangrsic T, Haydon P, Zorec R (2004b) Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia 46:437–445

    PubMed  Google Scholar 

  • Krzan M, Stenovec M, Kreft M, Pangrsic T, Grilc S, Haydon P, Zorec R (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583

    PubMed  CAS  Google Scholar 

  • Larsson M, Sawada K, Morland C, Hiasa M, Ormel L, Moriyama Y, Gundersen V (2011) Functional and anatomical identification of a vesicular transporter mediating neuronal ATP release. Cereb Cortex 22(5):1203–1214

    PubMed  Google Scholar 

  • Li D, Ropert N, Koulakoff A, Giaume C, Oheim M (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J Neurosci 28:7648–7658

    PubMed  CAS  Google Scholar 

  • Li D, Hérault K, Silm K, Evrard A, Wojcik S, Oheim M, Herzog E, Ropert N (2013) Lack of evidence for vesicular glutamate transporter expression in mouse astrocytes. J Neurosci 33:4434–4455

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Astrocytes couple synaptic activity to glucose utilization in the brain. News Physiol Sci 14:177–182

    PubMed  CAS  Google Scholar 

  • Malarkey EB, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589:4271–4300

    PubMed  CAS  PubMed Central  Google Scholar 

  • Marchaland J (2008) Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic like microvesicles in astrocytes. J Neurosci 28:9122–9132

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martineau M, Galli T, Baux G, Mothet J (2008) Confocal imaging and tracking of the exocytotic routes for D-serine-mediated gliotransmission. Glia 56:1271–1284

    PubMed  Google Scholar 

  • Martineau M, Shi T, Puyal J, Knolhoff AM, Dulong J, Gasnier B, Klingauf J, Sweedler JV, Jahn R, Mothet JP (2013) Storage and uptake of D-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 33:3413–3423

    PubMed  CAS  PubMed Central  Google Scholar 

  • Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642

    PubMed  CAS  Google Scholar 

  • Montana V, Malarkey E, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    PubMed  Google Scholar 

  • Nase G, Helm PJ, Enger R, Ottersen OP (2008) Water entry into astrocytes during brain edema formation. Glia 56:895–902

    PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman S (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    PubMed  CAS  Google Scholar 

  • Neher E (2012) Introduction: regulated exocytosis. Cell Calcium 52:196–198

    PubMed  CAS  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    PubMed  CAS  Google Scholar 

  • Neher E, Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10:21–30

    PubMed  CAS  Google Scholar 

  • Osborne KD, Lee W, Malarkey EB, Irving AJ, Parpura V (2009) Dynamic imaging of cannabinoid receptor 1 vesicular trafficking in cultured astrocytes. ASN Neuro 1

    Google Scholar 

  • Oya M, Kitaguchi T, Yanagihara Y, Numano R, Kakeyama M, Ikematsu K, Tsuboi T (2013) Vesicular nucleotide transporter is involved in ATP storage of secretory lysosomes in astrocytes. Biochem Biophys Res Commun 438:145–151

    PubMed  CAS  Google Scholar 

  • Pangrsic T (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758

    PubMed  CAS  Google Scholar 

  • Parpura V, Verkhratsky A (2012) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int 61:610–621

    PubMed  CAS  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parpura V, Basarsky T, Liu F, Jeftinija K, Jeftinija S, Haydon P (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    PubMed  CAS  Google Scholar 

  • Parpura V, Liu F, Brethorst S, Jeftinija K, Jeftinija S, Haydon PG (1995) Alpha-latrotoxin stimulates glutamate release from cortical astrocytes in cell culture. FEBS Lett 360:266–270

    PubMed  CAS  Google Scholar 

  • Parpura V, Baker B, Jeras M, Zorec R (2010) Regulated exocytosis in astrocytic signal integration. Neurochem Int 57:451–459

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    PubMed  CAS  Google Scholar 

  • Pelkmans L, Zerial M (2005) Kinase-regulated quantal assemblies and kiss-and-run recycling of caveolae. Nature 436:128–133

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (2003) Food for thought: challenging the dogmas. J Cereb Blood Flow Metab 23:1282–1286

    PubMed  Google Scholar 

  • Potokar M, Kreft M, Pangrsic T, Zorec R (2005) Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 329:678–683

    PubMed  CAS  Google Scholar 

  • Potokar M, Kreft M, Li L, Daniel Andersson J, Pangrsic T, Chowdhury H, Pekny M, Zorec R (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8:12–20

    PubMed  CAS  Google Scholar 

  • Potokar M, Stenovec M, Kreft M, Kreft M, Zorec R (2008) Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 56:135–144

    PubMed  Google Scholar 

  • Potokar M, Stenovec M, Gabrijel M, Li L, Kreft M, Grilc S, Pekny M, Zorec R (2010) Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58:1208–1219

    PubMed  Google Scholar 

  • Potokar M, Stenovec M, Kreft M, Gabrijel M, Zorec R (2011) Physiopathologic dynamics of vesicle traffic in astrocytes. Histol Histopathol 26:277–284

    PubMed  Google Scholar 

  • Potokar M, Lacovich V, Chowdhury HH, Kreft M, Zorec R (2012) Rab4 and Rab5 GTPase are required for directional mobility of endocytic vesicles in astrocytes. Glia 60:594–604

    PubMed  Google Scholar 

  • Potokar M, Stenovec M, Jorgačevski J, Holen T, Kreft M, Ottersen OP, Zorec R (2013a) Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 61(6):917–928

    PubMed  Google Scholar 

  • Potokar M, Vardjan N, Stenovec M, Gabrijel M, Trkov S, Jorgačevski J, Kreft M, Zorec R (2013b) Astrocytic vesicle mobility in health and disease. Int J Mol Sci 14:11238–11258

    PubMed  PubMed Central  Google Scholar 

  • Prebil M, Vardjan N, Jensen J, Zorec R, Kreft M (2011) Dynamic monitoring of cytosolic glucose in single astrocytes. Glia 59:903–913

    PubMed  Google Scholar 

  • Risher WC, Andrew RD, Kirov SA (2009) Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57:207–221

    PubMed  PubMed Central  Google Scholar 

  • Rituper B, Guček A, Jorgačevski J, Flašker A, Kreft M, Zorec R (2013) High-resolution membrane capacitance measurements for the study of exocytosis and endocytosis. Nat Protoc 8:1169–1183

    PubMed  Google Scholar 

  • Rupnik M, Kreft M, Sikdar S, Grilc S, Romih R, Zupancic G, Martin T, Zorec R (2000) Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc Natl Acad Sci U S A 97:5627–5632

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sabatini BL, Regehr WG (1999) Timing of synaptic transmission. Annu Rev Physiol 61:521–542

    PubMed  CAS  Google Scholar 

  • Sakaba T (2008) Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Neuron 57:406–419

    PubMed  CAS  Google Scholar 

  • Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    PubMed  CAS  Google Scholar 

  • Smith K (2010) Neuroscience: settling the great glia debate. Nature 468:160–162

    PubMed  CAS  Google Scholar 

  • Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverría C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Sáez JC, Retamal MA (2012) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 26:3649–3657

    PubMed  CAS  Google Scholar 

  • Stenovec M (2007) Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 313:3809–3818

    PubMed  CAS  Google Scholar 

  • Stenovec M, Milošević M, Petrušić V, Potokar M, Stević Z, Prebil M, Kreft M, Trkov S, Andjus PR, Zorec R (2011) Amyotrophic lateral sclerosis immunoglobulins G enhance the mobility of Lysotracker-labelled vesicles in cultured rat astrocytes. Acta Physiol (Oxf) 203:457–471

    CAS  Google Scholar 

  • Stevens B (2008) Neuron-astrocyte signaling in the development and plasticity of neural circuits. Neurosignals 16:278–288

    PubMed  CAS  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    PubMed  CAS  Google Scholar 

  • Swanson RA, Choi DW (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13:162–169

    PubMed  CAS  Google Scholar 

  • Taraska J, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100:2070–2075

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thomas P, Wong JG, Lee AK, Almers W (1993) A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11:93–104

    PubMed  CAS  Google Scholar 

  • Thoreson WB, Rabl K, Townes-Anderson E, Heidelberger R (2004) A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42:595–605

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trkov S, Stenovec M, Kreft M, Potokar M, Parpura V, Davletov B, Zorec R (2012) Fingolimod–A sphingosine-like molecule inhibits vesicle mobility and secretion in astrocytes. Glia 60:1406–1416

    PubMed  PubMed Central  Google Scholar 

  • Tvaruskó W, Bentele M, Misteli T, Rudolf R, Kaether C, Spector DL, Gerdes HH, Eils R (1999) Time-resolved analysis and visualization of dynamic processes in living cells. Proc Natl Acad Sci U S A 96:7950–7955

    PubMed  PubMed Central  Google Scholar 

  • Valtorta F, Meldolesi J, Fesce R (2001) Synaptic vesicles: is kissing a matter of competence? Trends Cell Biol 11:324–328

    PubMed  CAS  Google Scholar 

  • Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R (2007) Elementary properties of spontaneous fusion of peptidergic vesicles: fusion pore gating. J Physiol 585:655–661

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vardjan N, Stenovec M, Jorgačevski J, Kreft M, Zorec R (2010) Fusion pore: an evolutionary invention of nucleated cells. Eur Rev 18:347–364

    Google Scholar 

  • Vardjan N, Gabrijel M, Potokar M, Svajger U, Kreft M, Jeras M, de Pablo Y, Faiz M, Pekny M, Zorec R (2012) IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. J Neuroinflammation 9:144

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vardjan N, Potokar M, Stenovec M, Jorgačevski J, Trkov S, Kreft M, Zorec R (2013) Pathophysiology of vesicle dynamics in astrocytes. In: Parpura V, Verkhratsky A (eds) Pathological potential of neuroglia: possible new targets for medical intervention. Springer, New York

    Google Scholar 

  • Vardjan N, Kreft M, Zorec R (2014) Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. Glia 62(4):566–579

    PubMed  Google Scholar 

  • Verderio C, Cagnoli C, Bergami M, Francolini M, Schenk U, Colombo A, Riganti L, Frassoni C, Zuccaro E, Danglot L, Wilhelm C, Galli T, Canossa M, Matteoli M (2012) TI-VAMP/VAMP7 is the SNARE of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 104:213–228

    PubMed  CAS  Google Scholar 

  • Voets T (2000) Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28:537–545

    PubMed  CAS  Google Scholar 

  • Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    PubMed  CAS  Google Scholar 

  • Wacker I, Kaether C, Krömer A, Migala A, Almers W, Gerdes HH (1997) Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J Cell Sci 110(Pt 13):1453–1463

    PubMed  CAS  Google Scholar 

  • Wan QF, Dong Y, Yang H, Lou X, Ding J, Xu T (2004) Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124:653–662

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72:2001–2007

    PubMed  CAS  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    PubMed  CAS  Google Scholar 

  • Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    PubMed  CAS  Google Scholar 

  • Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon P (2004a) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101:9441–9446

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Q, Pangrsic T, Kreft M, Krzan M, Li N, Sul J, Halassa M, Van Bockstaele E, Zorec R, Haydon P (2004b) Fusion-related release of glutamate from astrocytes. J Biol Chem 279: 12724–12733

    PubMed  CAS  Google Scholar 

  • Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    PubMed  CAS  Google Scholar 

  • Zonta M, Angulo M, Gobbo S, Rosengarten B, Hossmann K, Pozzan T, Carmignoto G (2003) Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6:43–50

    PubMed  CAS  Google Scholar 

  • Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4(2):e00080. doi:10.1042/AN20110061

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by grants from the Slovenian Research Agency (P3 310, J3 4051, J3 4146, L3 3654; J3 3236), CIPKEBIP, and COST Nanonet.

Conflict of interest The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Zorec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vardjan, N., Kreft, M., Zorec, R. (2014). Regulated Exocytosis in Astrocytes is as Slow as the Metabolic Availability of Gliotransmitters: Focus on Glutamate and ATP. In: Parpura, V., Schousboe, A., Verkhratsky, A. (eds) Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Advances in Neurobiology, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-08894-5_5

Download citation

Publish with us

Policies and ethics