Skip to main content

Metabolism of 14C-Containing Contaminants in Plants and Microorganisms

  • Chapter
  • First Online:
Radionuclide Contamination and Remediation Through Plants

Abstract

The most important researches of organic contaminants metabolism in plants and microorganisms using 14C-labeled compounds are reviewed. The data that indicate on biodegradation and full detoxification (mineralization) of organic contaminants, such as aliphatic and monoaromatic hydrocarbons and their derivatives, polycyclic aromatic hydrocarbons, organochlorine pollutants, and, 2,4,6-trinitrotoluene, in microorganisms and to lesser extent in plants are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    CAS  PubMed  Google Scholar 

  • Adamia G, Ghoghoberidze M, Graves D, Khatisashvili G, Kvesitadze G, Lomidze E, Ugrekhelidze D, Zaalishvili G (2006) Absorption, distribution and transformation of TNT in higher plants. Ecotoxicol Environ Saf 64:136–145

    CAS  PubMed  Google Scholar 

  • Aelion CM, Bradley PM (1991) Aerobic biodegradation potential of subsurface microorganisms from a Jet fuel-contaminated aquifer. Appl Environ Microbiol 57:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • April TM, Foght JM, Currah RS (1999) Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canad J Microbiol 46:38–49

    Google Scholar 

  • Arziani B, Ugrekhelidze D, Mithaishvili T (1983) Detoxification of 2,4-dinitrophenol in plants (in Russian). Fiziol Rast (Moscow) 30:1040–1042

    CAS  Google Scholar 

  • Arziani B, Ugrekhelidze D, Kvesitadze G (2002) Detoxification mechanism exogenous monatomic phenols in pea seedlings. Ecotoxicol Environ Saf 51:85–89

    CAS  PubMed  Google Scholar 

  • Bankston JL, Sola DL, Komor AT, Dwyer DF (2002) Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood. Water Res 36:1539–1546

    CAS  PubMed  Google Scholar 

  • Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microbiol 64:2020–2025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beaudette LA, Ward OP, Pickard MA, Fedorak PM (2000) Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Lett Appl Microbiol 30:155–160

    CAS  PubMed  Google Scholar 

  • Bedessem ME, Norbert G, Swoboda-Colberg NG, Colberg PJS (1997) Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments. FEMS Microbiol Lett 52:213–218

    Google Scholar 

  • Best EP, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999a) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38:2057–2072

    Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999b) Environmental behavior and fate of explosives from groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:3383–3396

    Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1996a) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotuso streatus. Appl Environ Microbiol 62:292–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bezalel L, Hadar Y, Fu P, Freeman J, Cerniglia C (1996b) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and benzothiophene by the white rot fungus Pleurotuso streatus. Appl Environ Microbiol 62:2554–2559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boivin A, Amellal S, Michel Schiavon M, van Genuchten MT (2005) 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Environ Pollut 138:92–99

    Google Scholar 

  • Bregnard TP, Höhener P, Häner A, Zeyer J (1996) Degradation of weathered diesel fuel by microorganisms from a contaminated aquifer in aerobic and anaerobic microcosms. Environ Toxicol Chem 15:299–307

    CAS  Google Scholar 

  • Bumpus JA, Aust SD (1987) Biodegradation of DDT [1, 1, 1-trichloro-2, 2-bis(4-chloropheny- l)ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 65:529–533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cassagne C, Lessire R (1975) Studies on alkane biosynthesis in epidermis of Allium porrum L. leaves. 4. Wax movement into and out of the epidermal cells. Plant Sci Lett 5:261–266

    CAS  Google Scholar 

  • Chakraborty R, Coates J (2005) Hydroxylation and carboxylation—two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl Environ Microbiol 71:5427–5432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chakraborty R, O’Connor SM, Chan E, Coates JD (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and xylene compounds by Dechloromonas Strain RCB. Appl Environ Microbiol 71:8649–8655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chee-Sanford JC, Frost JW, Fries MR, Zhou J, Tiedje JM (1996) Evidence for acetyl coenzyme a and cinnamoyl coenzyme a in the anaerobic toluene mineralization pathway in Azoarcustolulyticus Tol-4. Appl Environ Microbiol 62:964–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng KY, Wong JWC (2008) Fate of 14C–Pyrene in soil–plant system amended with pig manure compost and Tween 80: a growth chamber study. Biores Technol 99:8406–8412

    CAS  Google Scholar 

  • Child R, Miller CD, Liang Y, Sims RC, Anderson AJ (2007) Pyrene mineralization by Mycobacterium strain KMS in a barley rhizosphere. J Environ Qual 36:1260–1265

    CAS  PubMed  Google Scholar 

  • Chkanikov DI (1985) Metabolism of 2,4-D in plants (in Russian). Uspekhi Sovremennoi Biologii 99:212–225

    CAS  Google Scholar 

  • Chrikishvili D, Sadunishvili T, Zaalishvili G (2006) Benzoic acid transformation via conjugation withpeptides and final fate of conjugates in higher plants. Ecotoxicol Environ Saf 64:390–399

    CAS  PubMed  Google Scholar 

  • Chrikishvilli D, Lomidze E, Mitaishvilli T (2005) Phenol conjugation with peptides and final transformations of conjugates in English ryegrass seedlings. Prikl Biokhim Mikrobiol 41:676–680

    CAS  PubMed  Google Scholar 

  • Coates JD, Anderson RT, Lovley DR (1996) Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol 62:1099–1101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coates JD, Woodward J, Allen J, Philip P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbour sediments. Appl Environ Microbiol 63:3589–3593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    CAS  PubMed  Google Scholar 

  • CycoÅ„ M, Lewandowska A, Piotrowska-Seget Z (2010) Comparison of mineralization dynamics of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) in soils of different textures. Pol J Environ Stud 2:293–301

    Google Scholar 

  • Devdariani T (1988) Biotransformation of cancerogenic polycyclic aromatic hydrocarbons in plants (in Russian). In: Durmishidze S (ed) Biotransformation of xenobiotics in plants. Metsniereba, Tbilisi, pp 79–162

    Google Scholar 

  • Devdariani T, Durmishidze S (1983) Isolation and identification of the main benzo(a)pyrene oxidation products in plants (in Russian). In: Durmshidze S (ed) Methods of biochemical studies of plans. Metsniereba, Tbilisi, pp 101–124

    Google Scholar 

  • Devdariani T, Kavtaradze L (1979a) Studies on benz-(a)-anthracene uptake and conversion by plant cell under sterile conditions. In: Durmishidze S (ed) Metabolism of biosphere chemical pollutants in plants (in Russian). Metsniereba, Tbilisi, pp 116–120

    Google Scholar 

  • Devdariani T, Kavtaradze L (1979b) Study of absorption and transformation of benz[a]anthracene by plant cells in sterile conditions. In: Durmishidze S (ed) Metabolism of chemical pollutants of biosphere in plants (in Russian). Metsniereba, Tbilisi, pp 92–97

    Google Scholar 

  • Devdariani T, Kavtaradze L, Kvartskhava L (1979a) Uptake of benz[a]anthracene-9-14C by roots of annual plants (in Russian). In: Durmishidze S (ed) Plants and chemical carcinogenics. Metsniereba, Tbilisi, pp 90–95

    Google Scholar 

  • Devdariani T, Kavtaradze L, Miminoshvili T (1979b) On 7, 10-14C-benz(a)pyrene oxidation by plant homogenates and enzyme systems of various organelles of pea (Pisum sativum). In: Durmishidze S (ed) Metabolism of biosphere chemical pollutants in plants (in Russian). Metsniereba, Tbilisi, pp 116–120

    Google Scholar 

  • Durmishidze S, Beriashvili T (1979) Uptake and conversion of xenobiotics by ryegrass leaves. Metabolism of biosphere chemical pollutants in plants. In: Durmishidze S (ed) Metabolism of biosphere chemical pollutants in plants (in Russian). Metsniereba, Tbilisi, pp 24–42

    Google Scholar 

  • Durmishidze S, Ugrekhelidze D (1967) Assimilation and translocation of gaseous hydrocarbons by higher plants. In: 7th international congress on biochemistry, Tokyo, Abstract, pp J-302

    Google Scholar 

  • Durmishidze S, Ugrekhelidze D (1968a) Absorption and conversion of butane by higher plants (in Russian). Dokladi Akademii Nauk SSSR 182:214–216

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D (1968b) Oxidation of ethane, propane and pentane by higher plants (in Russian). Bull Georg Acad Sci 50:661–666

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D (1975) Absorption and transformation of methane by plants (in Russian). Fiziol Rast (Moscow) 22:70–73

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A, Tsevelidze D (1969) The intermediate products of enzymatic oxidation of benzene and phenol (in Russian). Dokladi Akademii Nauk SSSR 184:466–469

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A (1974a) Absorption and transformation of benzene by higher plants (in Russian). Fiziologiya i Biochimiya Kulturnikh Rastenii 6:217–221

    Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A (1974b) Uptake of benzene by fruits from atmosphere (in Russian). Appl Biochem Microbiol 10:472–476

    CAS  Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Djikiya A (1974c) Absorption and transformation of toluene by higher plants (in Russian). Appl Biochem Microbiol 10:673–676

    CAS  Google Scholar 

  • Durmishidze S, Devdariani T, Kavtaradze L, Miminoshvili T (1979a) On the cleavage of benz(α)pyrene B and C aromatic ring by plants under sterile conditions. In: Durmishidze S (ed) Metabolism of biosphere chemical pollutants in plants (in Russian). Metsniereba, Tbilisi, pp 121–128

    Google Scholar 

  • Durmishidze S, Kavtaradze L, Devdariani T (1979b) On the isolation and identification of some 7,10-14C-benz(a)pyrene enzymatic oxidation Products in plants. In: Durmishidze S (ed) Metabolism of biosphere chemical pollutants in plants (in Russian). Metsniereba, Tbilisi, pp 99–108

    Google Scholar 

  • Durmishidze S, Ugrekhelidze D, Kakhniashvili C (1982) Metabolism of phenoxyacetic acids in plants: conjugation products of phenoxyacetic and 2,4-dichlorophenoxyacetic acids with peptides. In: 5th international congress of pesticide chemistry (JUPAC). Kyoto, Japan, Abstract pp Va-2

    Google Scholar 

  • Eaton DC (1985) Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microb Technol 7:194–196

    CAS  Google Scholar 

  • Edwards EA, Grbic-Galic D (1992) Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions. Appl Environ Microbiol 58:2663–2666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotuso streatus. Int Biodeter Biodegrad 41:111–117

    CAS  Google Scholar 

  • Esteve-Núňez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3808

    Google Scholar 

  • Feung C, Hamilton RH, Mumma RO (1976) Metabolism of 2,4-dichlorophenoxyacetic acid: 10. Identification of metabolites in rice root callus tissue cultures. J Agric Food Chem 24:1013–1019

    CAS  PubMed  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    CAS  PubMed  Google Scholar 

  • Glass ADM, Bohm BA (1971) The uptake of simple phenols by barley roots. Planta 100:93–105

    CAS  PubMed  Google Scholar 

  • Grbic-Galic D, Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harms H (1975) Metabolisierung von Benso(a)pyren in pflarzlichen Zellsuspension kulturen and Weizenkeim pflanzen. Landbauforsch Völkenrode 25:83–90

    CAS  Google Scholar 

  • Harms H, Dehnen W, Monch W (1977) Benzo[a]pyrene metabolites formed by plant cells. Z Naturforsch 320:321–326

    Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herrmann S, Popović MK, Paca J, Halecky M, Bajppai RK (2007) Mineralization and uptake of TNT by microorganisms: Effect of pretreatment with alkali. Cent Eur J Energ Mater 4:45–58

    CAS  Google Scholar 

  • Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2001) Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:110–118

    Google Scholar 

  • Hughes JB, Shanks JV, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    CAS  Google Scholar 

  • Jansen EF, Olson AC (1969) Metabolism of carbon-14-labeled benzene and toluene in Avocado fruit. Plant Physiol 44:786–787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jason T, Popesku JT, Singh A, Zhao JS, Hawari J, Ward OP (2004) Metabolite production during transformation of 2,4,6-trinitrotoluene (TNT) by a mixed culture acclimated and maintained on crude oil-containing media. Appl Microbiol Biotechnol 65:739–746

    Google Scholar 

  • Jindrová E, Chocová M, Demnerová K, Brenner V (2002) Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiol (Praha) 47:83–93

    Google Scholar 

  • Kakhniashvili C (1988) Biotransformation of some pesticides in plants (in Russian). In: Durmishidze S (ed) Biotransformation of xenobiotics in plants. Metsniereba, Tbilisi, pp 147–163

    Google Scholar 

  • Kakhniashvili C, Mithaishvili T, Ugrekhelidze D (1979) Degradation of aromatic ring of phenoxyacetic acids in plants (in Russian). In: Durmishidze S (ed) Metabolism of chemical pollutants of biosphere in plants. Metsniereba, Tbilisi, pp 82–91

    Google Scholar 

  • Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366

    CAS  PubMed  Google Scholar 

  • Kamei I, Sonoki S, Haraguchi K, Kondo R (2006) Fungal bioconversion of toxic polychlorinated biphenyls by white rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940

    CAS  PubMed  Google Scholar 

  • Kazumi J, Caldwell ME, Suflita JM, Lovley DR, Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 31:813–818

    CAS  Google Scholar 

  • Kennes C, Lema JM (1994) Simultaneous biodegradation of p-cresol and phenol by the basidiomycete Phanerochaete chrysosporium. J Indust Microbiol 13:311–314

    Google Scholar 

  • Khatisashvili G, Kvesitadze G, Adamia G, Gagelidze N, Sulamanidze L, Ugrekhelidze D, Zaalishvili G, Ghoghoberidze M, Ramishvili M (2004) Bioremediation of contaminated soils on the former military locations and proving grounds in Georgia. J Biol Phys Chem 4:162–168

    CAS  Google Scholar 

  • Khatisashvili G, Gordeziani M, Adamia G, Kvesitadze E, Sadunishvili T, Kvesitadze G (2009) Higher plants ability to assimilate explosives. World Acad Sci Eng Technol 57:266–270

    Google Scholar 

  • Khindaria A, Grover TA, Aust SD (1995) Reductive dehalogenation of aliphatic halocarbons by lignin peroxidase of Phanerochaete chrysosporium. Environ Sci Technol 29:719–725

    CAS  PubMed  Google Scholar 

  • Korte F, Kvesitadze G, Ugrekhelidze D, Gordeziani M, Khatisashvili G, Buadze O, Zaalishvili G, Coulston F (2000) Review: organic toxicants and plants. Ecotoxicol Environ Saf 47:1–26

    CAS  PubMed  Google Scholar 

  • Kvesitadze G, Khatisashvili G, Sadunishvili T, Ramsden JJ (2006) Biochemical mechanisms of detoxification: basis of phytoremediation. Springer, Berlin

    Google Scholar 

  • Lee EH, Kim J, Cho KS, Ahn YG, Hwang GS (2010) Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ Sci Pollut Res Int 17:64–77

    PubMed  Google Scholar 

  • Marco-Urrea E, Reddy CA (2012) Degradation of chloro-organic pollutants by white rot fungi. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, Berlin, pp 31–66

    Google Scholar 

  • Mithaishvili T, Scalla R, Ugrekhelidze D, Tsereteli B, Sadunishvili T, Kvesitadze G (2005) Transformation of aromatic compounds in plants grown in aseptic conditions. Z Naturforsch 60c:97–102

    Google Scholar 

  • Mori T, Kondo R (2002) Oxidation of dibenzo-p-dioxin, dibenzofuran, biphenyl, and diphenyl ether by the white rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 60:200–205

    CAS  PubMed  Google Scholar 

  • Mougin C, Pericaud C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide Lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 47:51–59

    CAS  Google Scholar 

  • Müller H (1976) Aufnahme von 3,4-Benzpyren durch Nahrungspflanzen aus kunstlich angereicherten Substraten. Z Pflanzenernähr Bodenkd 6:685–690

    Google Scholar 

  • Napolitano R, Juárez MP (1997) Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatomainfestans. Arch Biochem Biophys 344:208–214

    CAS  PubMed  Google Scholar 

  • Nicholson CA, Fathpure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225

    CAS  PubMed  Google Scholar 

  • Nicholson CA, Fathpure BZ (2005) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 45:257–262

    Google Scholar 

  • Penner D, Early RW (1973) Effect of alachlor, butylate and chlorbromuron on carbofuran distribution and metabolism in barley and corn. Weed Sci 21:360–366

    CAS  Google Scholar 

  • Pridham JB (1964) The phenol glucosylationreaction in the plant kingdom. Phytochemistry 3:493–800

    CAS  Google Scholar 

  • Ramsey CB (2008) Radiocarbon dating: revolutions in understanding. Archaeometry 50:249–275

    CAS  Google Scholar 

  • Reddy GVB, Joshi DK, Aust SD (1997) Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichomitus squalens. Microbiology 143:2353–2360

    CAS  Google Scholar 

  • Rentz JA, Alvarez PJJ, Schnoor JL (2005) Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: implications for phytoremediation. Environ Poll 136:477–484

    CAS  Google Scholar 

  • Rho D, Hodgson J, Thiboutot S, Ampleman G, Hawari J (2001) Transformation of 2,4,6-trinitrotoluene (TNT) by immobilized Phanerochaete chrysosporium under fed-batch and continuous TNT feeding conditions. Biotechnol Bioeng 20:271–281

    Google Scholar 

  • Rojo-Nieto E, Perales-Vargas-Machuca JA (2012) Microbial degradation of PAHs: organisms and environmental compartments In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, Berlin, pp 263–290

    Google Scholar 

  • Sandermann H (1987) Pestizid-Rückstände in Nahrungspflanzen. Die Rolle des pflanzlichen Metabolismus. Naturwissenschaften 74:573–578

    CAS  Google Scholar 

  • Sandermann H, Schmitt R, Eckey H, Bauknecht T (1991) Plant biochemistry of xenobiotics: isolation and properties of soybean O- and N-glucosyl and O- and N-malonyltransferases for chlorinated phenols and anilines. Arch Biochem Biophys 287:341–350

    CAS  PubMed  Google Scholar 

  • Schmidt SN, Christensen JH, Johnsen AR (2010) Fungal PAH-metabolites resist mineralization by soil microorganisms. Environ Sci Technol 44:1677–1682

    CAS  PubMed  Google Scholar 

  • Schmitt R, Kaul J, Trenck T, Schaller E, Sandermann H (1985) β-D-Glucosyl and O-malonyl-β-D-glucosyl conjugates of pentachlorophenol in soybean and wheat: identification and enzymatic synthesis. Pestic Biochem Physiol 24:77–85

    CAS  Google Scholar 

  • Schoenmuth BW, Pestemer W (2004) Dendroremediation of trinitrotoluene (TNT) Part 2: fate of radio-labelled TNT in trees. Environ Sci Pollut Res 11:331–339

    CAS  Google Scholar 

  • Schrader PS, Hess TF (2004) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry. J Environ Qual 33:1202–1209

    CAS  PubMed  Google Scholar 

  • Sens C, Sheidemann P, Klunk A, Werner D (1998) Distribution of 14C-TNT and derivatives in different biochemical compartments of Phaseolus vulgaris. Environ Sci Pollut Res 5:202–208

    CAS  Google Scholar 

  • Sens C, Sheidemann P, Werner D (1999) The distribution of 14C-TNT in different biochemical compartments of the monocotyledoneous Triticum aestivum. Environ Pollut 104:113–119

    CAS  Google Scholar 

  • Singh BK, Kuhad RC (1999) Biodegradation of lindane (gamma-hexachlorocyclohexane) by the white rot fungus Tramete shirsutus. Lett Appl Microbiol 28:238–241

    CAS  PubMed  Google Scholar 

  • Singh BK, Kuhad RC (2000) Degradation of insecticide lindane (g-HCH) by white rot fungi Tramete shirsutus, Cyathus bulleri and Phanerochaete sordida. Pest Manag Sci 56:142–146

    CAS  Google Scholar 

  • Slaski JJ, Archambault DJ, Li X (2000) Evaluation of polycyclic aromatic hydrocarbon (PAH) accumulation in plants. The potential use of PAH accumulation as a marker of exposure to air emissions from oil and gas flares. ISBN 0-7785-1228-2. Report prepared for the Air Research Users Group, Alberta Environment, Edmonton, Alberta

    Google Scholar 

  • Smith AE (1985) Identification of 2,4-dichloroanisole and 2,4-dichlorophenol as soil degradation products of ring-labelled [14C]2,4-D. Bull Environ Contam Toxicol 34:150–157

    CAS  PubMed  Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105

    CAS  PubMed  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Strophariacoronilla: role of manganese peroxidase. Appl Environ Microbiol 69:3957–3964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tao Y, Fishman A, Bentley WE, Wood TK (2004) Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol 70:3814–3820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tateoka TN (1970) Studies on the catabolic pathway of protocatechuic acid in mung bean seedlings. Bot Mag (Tokyo) 83:49–54

    CAS  Google Scholar 

  • Tomlin CDS (2006) The pesticide manual: a world compendium, 14th edn. British Crop Protection Council, Surrey

    Google Scholar 

  • Trenk T, Sandermann H (1978) Metabolism of benzo[a]pyrene in cell suspension cultures of parsley (Petroselinum hortense, Hoffm.) and soybean (Glycine max L.). Planta 141:245–251

    Google Scholar 

  • Tuomi PM, Salminen JM, Jørgensen KS (2004) The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microbiol Ecol 51:99–107

    CAS  PubMed  Google Scholar 

  • Ugrekhelidze D (1976) Metabolism of exogenous alkanes and aromatic hydrocarbons in plants (in Russian). Metsnieraba, Tbilisi

    Google Scholar 

  • Ugrekhelidze D, Durmishidze S (1984) Penetration and detoxification of organic xenobiotics in plants (in Russian). Metsniereba, Tbilisi

    Google Scholar 

  • Ugrekhelidze D, Chrikishvili D, Mithaishvili T (1977) Benzene hydroxylation in plants (in Russian). Bull Georg Acad Sci 88:441–444

    CAS  Google Scholar 

  • Ugrekhelidze D, Korte F, Kvesitadze G (1997) Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ Saf 37:24–28

    CAS  PubMed  Google Scholar 

  • Ugrekhelidze D, Kvesitadze G, Arziani B, Mithaishvili T, Phiriashvili V (1999) Detoxification of phenol in annual plant seedlings. Ecotoxicol Environ Saf 42:119–124

    CAS  PubMed  Google Scholar 

  • Ulrich AC, Edwards EA (2003) Physiological and molecular characterization of anaerobic benzene- degrading mixed cultures. Environ Microbiol 5:92–102

    CAS  PubMed  Google Scholar 

  • Varazashvili T, Pruidze M (2005) Uptake and oxidative degradation of pentane in plants. J Biol Phys Chem 5:145–150

    CAS  Google Scholar 

  • Viana AM, Mantell SH (1998) Comparative uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid in callus cultures of monocot (Dioscorea spp.) and dicot (Nicotiana tabacum L.) plants. Revta brasil Bot 21:89–99

    CAS  Google Scholar 

  • Vogel TM, Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52:200–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogt C, Kleinsteuber S, Richnow H-H (2011) Anaerobic benzene degradation by bacteria. Microbial Biotechnol 4:710–724

    Google Scholar 

  • Walker JD, Colwell RR (1976) Measuring the potential activity of hydrocarbon-degrading bacteria. Appl Environ Microbiol 31:189–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walton BT, Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microbiol 56:1012–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiner JM, Lauck TS, Lovley DR (1998) Enhanced anaerobic benzene degradation with the addition of sulfate. Bioremed J 2:159–173

    CAS  Google Scholar 

  • Wilken A, Bock C, Bokern M, Harms H (2009) Metabolism of different PCB congeners in plant cell cultures. Environ Toxicol Chem 14:2017–2022

    Google Scholar 

  • Yadav JS, Reddy CA (1992) Non-involvement of lignin peroxidases and manganese peroxidases in 2,4,5-trichlorophenoxyacetic acid degradation by Phanerochaete chrysosporium. Biotechnol Lett 14:1089–1092

    CAS  Google Scholar 

  • Yadav JS, Reddy CA (1993a) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav JS, Reddy CA (1993b) Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium. Appl Environ Microbiol 59:2904–2908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav JS, Wallace RE, Reddy CA (1995) Mineralization of mono- and dichlorobenzenes and simultaneous degradation of chloro- and methyl-substituted benzenes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:677–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav JS, Bethea C, Reddy CA (2000) Mineralization of trichloroethylene (TCE) by the white rot fungus Phanerochaete chrysosporium. Bull Environ Contam Toxicol 65:28–34

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgi Kvesitadze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kvesitadze, G., Khatisashvili, G., Sadunishvili, T. (2014). Metabolism of 14C-Containing Contaminants in Plants and Microorganisms. In: Gupta, D., Walther, C. (eds) Radionuclide Contamination and Remediation Through Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-07665-2_13

Download citation

Publish with us

Policies and ethics