Skip to main content

Lignocellulosic Biomass: As Future Alternative for Bioethanol Production

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

Biofuels provide a potential and promising green alternative to avoid the global political instability and environmental crises that arise from dependence on petroleum. It has an important role to mitigate global warming and to conserve fossil fuels. Currently, starchy crops such as corn are utilized as a source of raw material for the production of bioethanol but it cannot meet global fuel requirements. Besides, due to their food value these conventional crops are not able to cater the demand of biofuel production. Therefore, lignocellulosic biomass seems to be an attractive alternative for inexorable supplies of biofuels, cutting down the credence on fossil fuel resources. Lignocellulosic biomass feedstock is abundant, recyclable, cheap, and is evenly distributed in nature. However, lignocellulosic bioethanol production is not commercialized at a large scale due to certain economic and technical barriers which make ethanol production exorbitant. Therefore, research should be focussed to develop commercially profitable processes (green technology) for bioethanol production. Moreover, current approach is focussed on enzyme-based conversion of lignocellulosic biomass to bioethanol. The assurance of highly dynamic conversion coupled to a “Green” technology is now universally appealing. Therefore, the main aim of this chapter is to critically analyze the current situation and future needs for technological developments in the area of producing liquid biofuels from lignocellulosic biomass. It primarily covers distinct lignocellulosic biomass conversion technologies, challenges, and future research targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbi M, Kuhad RC, Singh A (1996) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Ind Microbiol 17:20–23

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust 33(3):233–271

    Article  Google Scholar 

  • Antal MJ, Water (1996) A traditional solvent pregnant with new applications. In: White HJ (ed) Proceedings of the 12nd International Conference on the Properties of Water and Steam. Begell House, New York, pp 24–32

    Google Scholar 

  • Badger PC (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. American Society for Horticultural Science (ASHS) Press, Alexandria, VA

    Google Scholar 

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust 34:551–573

    Article  CAS  Google Scholar 

  • Ballesteros I, Negro MJ, Oliva JM, Cabanas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 130: 496–508

    Article  Google Scholar 

  • Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel Bioprod Bioref 4:77–93

    Article  CAS  Google Scholar 

  • Belkacemi K, Hamoudi S (2003) Enzymatic hydrolysis of dissolved corn stalk hemicelluloses: reaction kinetics and modeling. J Chem Technol Biotechnol 78:802–808

    Article  CAS  Google Scholar 

  • Bernton H, Kovarik B, Sklar S (1982) The forbidden fuel: power alcohol in the 20th century. W.B. Griffin, New Haven, CT, p 274, Bibl. Index 81- 85112. ISBN 19.95 ISBN 0-941726-00-2

    Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S et al (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  CAS  PubMed  Google Scholar 

  • Bisaria VS, Ghose TK (1981) Biodegradation of cellulosic materials: substrate, microorganisms, enzymes and products. Enzyme Microb Technol 3:90–104

    Article  CAS  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bienergy 49:568–577

    CAS  Google Scholar 

  • Börjesson J, Peterson R, Tjerneld F (2007) Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzyme Microbiol Technol 40:754–762

    Article  Google Scholar 

  • Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V et al (2010) Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichiastipitis. J Biosci Bioeng 110(1):18–25

    Article  CAS  PubMed  Google Scholar 

  • Cadoche L, Lopez GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Waste 30:153–157

    Article  CAS  Google Scholar 

  • Campbell CH, Laherrere JH (1998) The end of cheap oil. Sci Am 278(3):78–83

    Article  Google Scholar 

  • Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY (1996) Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett 118:1013–1018

    Article  Google Scholar 

  • Cardona CA, Quintero JA, Paz IC (2009) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101(13):4754–4766

    Article  PubMed  Google Scholar 

  • Chandel AK, Chan E, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chandra RP, Bura R, Mabee WE et al (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93

    CAS  PubMed  Google Scholar 

  • Chen M, Zhao J, Xia L (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71:411–415

    Article  CAS  Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Source 27:327–333

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers Manage 49:125–130

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  • Eggeman T, Elander TR (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 8:2019–2025

    Article  Google Scholar 

  • Eggman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025

    Article  Google Scholar 

  • Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microbiol Technol 31:353–364

    Article  CAS  Google Scholar 

  • Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13(6–7):1275–1287

    Article  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  PubMed  Google Scholar 

  • Ferreira S, Durate AP, Ribeiro MHL, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistusladanifer and Cytisusstriatus for bioethanol production. Biochem Eng J 45:192–200

    Article  CAS  Google Scholar 

  • Gamage J, Howard L, Zisheng Z (2010) Bioethanol production from lignocellulosic biomass. J Biobased Mater Bioenergy 4:3–11

    Article  CAS  Google Scholar 

  • Glassner D, Hettenhaus J, Schechinger T (1999) Corn stover potential: recasting the corn sweetner industry. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 74–82

    Google Scholar 

  • Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101:4842–4850

    Article  CAS  PubMed  Google Scholar 

  • Godia F, Casas C, Sola C (1987) A survey of continuous systems using immobilized cells. Process Biochem 22:43–48

    CAS  Google Scholar 

  • Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K et al (2007) Tropical forests and climate policy. Science 316:985–986

    Article  CAS  PubMed  Google Scholar 

  • Hamelinck CN, Hooijdonk GV, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  CAS  Google Scholar 

  • Ho NWY, Chen Z, Brainard A, Sealak M (1999) Successful design and development of genetically Engineered Saccharomyces yeasts for effective co-fermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:164–192

    Google Scholar 

  • Hsu TA (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization. Taylor & Francis, Washington, DC, pp 179–212

    Google Scholar 

  • Advanced course in LCA (2005) How to decrease environmental impact by choice of car fuel. http://www.infra.kth.se/fms/utbildning/lca/project%20reports/Group%201%20-%20E85.pdf

  • Karimi K, Kheradmandinia S, Taherzadeh MJ (2006) Conversion of rice straw to sugars by dilute acid hydrolysis. Biomass Bioenergy 30:247–253

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kim S, Holtzapple MT (2006) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006

    Article  Google Scholar 

  • Kovács K, Szakacs G, Zacchi G (2009) Comparative enzymatic hydrolysis of pretreated spruce by supernatants, whole fermentation broths and washed mycelia of Trichoderma reesei and Trichoderma atroviride. Bioresour Technol 100:1350–1357

    Article  PubMed  Google Scholar 

  • Kovarik B, Kettering CF (1982) Fuel alcohol: energy and environment in a hungry world. London: International Institute for Environment and Development. The Development of Tetraethyl Lead in the Context of Technological Alternatives, Society of Automotive Engineers, Fuels & Lubricants Division, Historical Colloquium, Baltimore, MD 1994

    Google Scholar 

  • Krishna SH, Reddy TJ, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77(2): 193–196

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25:302–314

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 32:517–526

    Article  CAS  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhu JY, Fu S (2010) Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58:7233–7238

    Article  CAS  PubMed  Google Scholar 

  • Lynd RL, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Google Scholar 

  • Moiser N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Monique H, Faaij A, van den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133

    Article  Google Scholar 

  • Moniruzzaman M (1995) Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichiastipitis. World J Microbiol Biotechnol 11:646

    Article  CAS  PubMed  Google Scholar 

  • Monserrate E, Leschine SB, Canale-Parola E (2001) Clostridium hungatei sp. Nov., a mesophillic, N2-fixing cellulolytic bacterium isolated from soil. Int J Syst Evol Microbiol 51:123–132

    CAS  PubMed  Google Scholar 

  • Murray D (2005) Ethanol’s potential: looking beyond corn. Earth Policy Institute, Washington, DC, http://www.earthpolicy.org/Updates/2005/Update49

    Google Scholar 

  • Natural Resources Canada’s Management Team (2005) http://www2.nrcan.gc.ca/dmo/aeb/English/ReportDetail.asp?x=265&type=rpt

  • Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production, dynamic biochemistry, process biotechnology and molecular biology. Global Science Books. p 1–13

    Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichiastipitis. J Biotechnol 87:17–27

    Article  CAS  PubMed  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microbiol Technol 18(5):312–331

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolyzates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766. doi:10.1007/s00253-002-0965-0

    Article  CAS  PubMed  Google Scholar 

  • Perez JA, Gonzalez A, Oliva JM et al (2007) Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J Chem Technol Biotechnol 82:929–938

    Article  CAS  Google Scholar 

  • Perlack RD, Wright L, Turhollow LA, Graham RL, Stokes B, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory Report ORNL/TM-2005/66. Oak Ridge: US Dept. of Energy

    Google Scholar 

  • Pickett J, Anderson D, Bowles D, Bridgwater T, Jarvis P, Mortimer N, Poliakoff M, Woods J (2008) Sustainable biofuels: prospects and challenges. The Royal Society, London, UK, http://royalsociety.org/document.asp?id¼ 7366

    Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Raneses A, Hanson K, Shapouri H (1998) Economic impacts from shifting cropland use from food to fuel. Biomass Bioenergy 15(6):417–422

    Article  Google Scholar 

  • RFA (2010) Ethanol industry outlook: climate of opportunity, http://www.ethanolrfa.org/page/-/objects/pdf/outlook/RFAoutlook2010_fin.pdf? nocdn¼1

  • Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453

    Article  CAS  PubMed  Google Scholar 

  • Sanchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Sandgren M, Shaw A, Ropp TH, Wu S, Bott R, Cameron AD et al (2001) The X-ray crystal structure of the Trichoderma reesei family12 endoglucanase 3, Cel12A, at 1.9 Å resolution. J Mol Biol 308(2):295–310

    Article  CAS  PubMed  Google Scholar 

  • Sewalt VJH, Glasser WG, Beauchemin KA (1997) Lignin impact on fiber degradation 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem 45:1823–1828

    Article  CAS  Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Suman A, Tiwari P et al (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24:667–673

    Article  CAS  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101(13):5003–5012

    Article  CAS  PubMed  Google Scholar 

  • Sree NK, Sridhar M, Suresh K, Rao LV, Pandey A (1999) Ethanol production in solid substrate fermentation using thermotolerant yeast. Proc Biochem 34:115–119

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Sun RC, Lawther JM, Banks WB (1995) Influence of alkaline pretreatments on the cell-wall components of wheat-straw. Ind Crop Prod 4(2):127–145

    Article  CAS  Google Scholar 

  • Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10(5):367–375

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007a) Acid based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3):472–499

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007b) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738

    CAS  Google Scholar 

  • Takahashi CM, Lima KGC, Takahashi DF, Alterthum F (2000) Fermentation of sugarcane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 16:829–834

    Article  CAS  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  CAS  PubMed  Google Scholar 

  • Tampier M, Smith D, Bibeau E, Beauchemin PA (2004) Identifying environmentally preferable uses for biomass resources. http://www.cec.org/files/PDF/ECONOMY/Biomass-Stage-I-II_en.pdf

  • Toivolla A, Yarrow D, Van-den-bosch E, Van-dijken JP, Sheffers WA (1984) Alcoholic fermentation of D-xylose by yeasts. Appl Microbiol Biotechnol 47:1221–1223

    Google Scholar 

  • Uihlein A, Schbek L (2009) Environmental impacts of a lignocellulosic feedstock biorefinery system: an assessment. Biomass Bioenergy 33:793–802

    Article  CAS  Google Scholar 

  • Wati L, Kumari S, Kundu BS (2007) Paddy straw as substrate for ethanol production. Indian J Microbiol 47:26–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weil JR, Sarikaya A, Rau SL et al (1997) Pretreatment of yellow poplar sawdust by pressure cooking in water. Appl Biochem Biotechnol 68:21–40

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn Stover. Bioresour Technol 96(18):2026–2032

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Takakuwa N, Nogawa M, Okada H, Morikawa Y (1998) A third xylanase from Trichoderma reesei PC-3-7. Appl Microbiol Biotechnol 49:18–724

    Article  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agr Biol Eng 2(3):51–68

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiaz Ul Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pirzadah, T.B., Malik, B., Kumar, M., Rehman, R.U. (2014). Lignocellulosic Biomass: As Future Alternative for Bioethanol Production. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07578-5_8

Download citation

Publish with us

Policies and ethics