Skip to main content

Cytotoxic Cyclic Peptides from the Marine Sponges

  • Chapter
  • First Online:

Abstract

To date, a significant number of cyclic peptides have been isolated from the marine sponges. Their structures often contain non-proteinogenic amino acids, some of which are derived from the biosynthetic pathway mixed with polyketides synthase. Halogenation, N-formylation, and racemaization to D-isomers were also frequently observed. Here we review the structural features of cytotoxic cyclic peptides from marine sponges. The cyclic peptides and depsipeptides were classified into different cyclization ways. The recent progress on the studies of their mode of action and biosynthesis was also included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schwarzer D, Finkin R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    CAS  Google Scholar 

  2. McIntosh JA, Donia MS, Schmidt EW (2006) Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 26:537–559

    Google Scholar 

  3. Walsh C, Chen HW, Keating T, Hubbard B, Losey H, Luo L, Marshall C, Miller D, Patel H (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on the NRPS assembly lines. Curr Opin Chem Biol 5:525–534

    CAS  Google Scholar 

  4. Sivonen K, Leikoski N, Fewer D, Jokela J (2010) Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86:1213–1225

    CAS  Google Scholar 

  5. Nakao Y, Yoshida S, Matsunaga S, Shindoh N, Terada Y, Nagai K, Yamashita J, Ganesan A, van Soest R, Fusetani N (2006) Azumamides A–E: histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge Mycale izuensis. Angew Chem Int Ed 45:7553–7557

    CAS  Google Scholar 

  6. Roy M, Ohtani I, Tanaka J, Higa T, Satari R (1999) Barangamide A, a new cyclic peptide from the Indonesian sponge Theonella swinhoei. Tetrahedron Lett 40:5373–5376

    CAS  Google Scholar 

  7. Roy M, Ohtani I, Ichiba T, Tnaaka J, Satari R, Higa T (2000) New cyclic peptides from the Indonesian sponge Theonella swinhoei. Tetrahedron 56:9079–9092

    CAS  Google Scholar 

  8. Tan LT, Williamson R, Gerwick W, Watts K, McGouch K, Jacobs R (2000) Cis,cis- and trans,trans-ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J Org Chem 65:419–425

    CAS  Google Scholar 

  9. Deng S, Taunton J (2002) Kinetic control of proline amide rotamers: total synthesis of trans,trans- and cis,cis-ceratospongamide. J Am Chem Soc 124:916–917

    CAS  Google Scholar 

  10. Gulavita N, Pomponi S, Wright A (1994) Isolation and structure elucidation of perthamide B, a novel peptide from the sponge Theonella sp. Tetrahedron Lett 35:6815–6818

    CAS  Google Scholar 

  11. Festa C, Marino S, Sepe V, Monti M, Luciano P, D’Auria M, Debitus C, Bucci M, Vellecco V, Zampella A (2009) Perthamides C and D, two new potent ant-inflammatory cyclopeptides from a Solomon Lithistid sponge Theonella swinhoei. Tetrahedron 65:10424–10429

    CAS  Google Scholar 

  12. Plaza A, Bifulco G, Masullo M, Lloyd J, Keffer J, Colin P, Hooper J, Bell L, Bewley C (2010) Mutremdamide A and koshikamides C-H, peptide inhibitors of HIV-1 entry from different Theonella species. J Org Chem 75:4344–4355

    CAS  Google Scholar 

  13. Pettit G, Herald C, Boyd M, Leet J, Cufresne C, Doubek D, Schmidt J, Cerny R, Hooper J, Rutzler K (1991) Isolation and structure of the cell growth inhibitory constituents from the Western Pacific marine sponge Axinella sp. J Med Chem 34:3339–3340

    CAS  Google Scholar 

  14. Pettit G, Gao F, Cerny R, Doubek D, Tackett L, Schmidt J, Chapuis J (1994) Antineoplastic agents. 278. Isolation and structure of axinastatins 2 and 3 from a Western Caroline Island marine sponge. J Med Chem 37:1165–1168

    CAS  Google Scholar 

  15. Pettit G, Gao F, Cerny R (1994) Isolation and structure of axinastatin 4 from the Western Indian Ocean marine sponge Axinella cf. carteri. Heterocycles 35:711–718

    Google Scholar 

  16. Bates R Caldera S Ruane M (1998) Synthesis and stereochemistry of axinastatin 4. J Nat Prod 61:405

    CAS  Google Scholar 

  17. Pettit G, Gao F, Schmidt J, Chapuis J (1994) Isolation and structure of axinastatin 5 from a Republic of Comoros marine sponge. Bioorg Med Chem Lett 4:2935–2940

    CAS  Google Scholar 

  18. Mechnich O, Hessler G, Kessler H (1997) Cyclic heptapeptides axinastatin 2, 3, and 4: conformational analysis and evaluation of the biological potential. Helv Chim Acta 80:1338–1354

    CAS  Google Scholar 

  19. Fernandez R, Omar S, Feliz M, Quinoa E, Riguera R (1992) Malaysiatin, the first cyclic heptapeptide from a marine sponge. Tetrahedron Lett 33:6017–6020

    CAS  Google Scholar 

  20. Konat R, Matha B, Winkler J, Kessler H (1995) Axinastatin 1 or malaysiatin? Proof of constitution and 3D structure in solution of a cyclic heptapeptide with cytostatic properties. Liebigs Ann 5:765–774

    Google Scholar 

  21. Williams D, Patrick B, Behrisch H, Van Soest R, Roberge M, Andersen R (2005) Dominicin, a cyclic octapeptide, and laughine, a bromopyrrole alkaloid, isolated from the Carribbean marine sponge Eurypon laughlini. J Nat Prod 68:327–330

    CAS  Google Scholar 

  22. Vicente J, Vera B, Rodriguez A, Rodriguez-Escudero I, Raptis R (2009) Euryjanicin A: a new cycloheptapeptide from the Carribean marine sponge Prosuberites laughlini. Tetrahedron Lett 50:4571–4574

    CAS  Google Scholar 

  23. Vera B, Vicente J, Rodriguez A (2009) Isolation and structural elucidation of euryjanicins B–D, proline-containing cycleheptapeptides from the Carribean marine sponge Prosuberites laughlini. J Nat Prod 72:1555–1562

    CAS  Google Scholar 

  24. Pettit G, Srirangam J, Herald D, Xu JP, Boyd M, Cichacz Z, Kamano Y, Schmidt J, Erickson K (1995) Isolation and crystal structure of stylopeptide 1, a new marine porifera cycloheptapeptide. J Org Chem 60:8257–8261

    CAS  Google Scholar 

  25. Mohammed R, Peng JN, Kelly M, Hamman M (2006) Cyclic heptapeptides from the Jamaican sponge Stylissa caribica. J Nat Prod 69:1739–1744

    CAS  Google Scholar 

  26. Kobayashi J, Tsuda M, Nakamura T, Mikami Y, Shigemori H (1993) Hymenamides A and B, new proline-rich cyclic heptapeptides from the Okinawan marine sponge Hymeniacidon sp. Tetrahedron 49:2391–2402

    CAS  Google Scholar 

  27. Tsuda M, Shigemori H, Mikami Y, Kobayashi J (1993) Hymenamides C–E, new cyclic heptapeptides with two proline residues from the Okinawan marine sponge Hymenicacidon sp. Tetrahedron 49:6785–6796

    CAS  Google Scholar 

  28. Kobayashi J, Nakamura T, Tsuda M (1996) Hymendamide F, new cyclic heptapeptide from marine sponge Hymeniacidon sp. Tetrahedron 52:6355–6360

    CAS  Google Scholar 

  29. Tsuda M, Sasaki T, Kobayashi J (1994) Hymenamides G, H, J, and K, four new cyclic octapeptides from the Okinawan marine sponge Hymeniacidon sp. Tetrahedron 50:4667–4680

    CAS  Google Scholar 

  30. Erickson K, Gustafson K, Milanowski D, Pannell L, Klose J, Boyd M (2003) Myriastramides A–C, new modified by cyclic peptides from the Philippines marine sponge Myriastra clavosa. Tetrahedron 59:10231–10238

    CAS  Google Scholar 

  31. Pettit G, Cichacz Z, Barkoczy J, Dorsaz A, Herald D, Williams M, Doubek D, Schmidt J, Tackett L, Brune D, Cerny R, Hooper J, Bakus G (1993) Isolation and structure of the marine sponge cell growth inhibitory cycic peptide phakellistatin 1. J Nat Prod 56:260–267

    CAS  Google Scholar 

  32. Pettit G, Tan R, Williams M, Tacket L, Schmidt J, Cerny R, Hooper J (1993) Isolation and structure of phakellistatin 2 from the Eastern Indian Ocean marine sponge Phakellia carteri. Bioorg Med Chem Lett 3:2869–2874

    CAS  Google Scholar 

  33. Pettit G, Tan R, Herald D, Cerny R, Williams M (1994) Antineoplastic agents. 277. Isolation and structure of phakellistatin 3 and isophakellistatin 3 from a Republic of Comoros marine sponge. J Org Chem 59:1593–1595

    CAS  Google Scholar 

  34. Pettit G, Xu JP, Cichacz Z, Schmidt J, Dorsaz A, Boyd M, Cerny R (1995) Isolation and structure of the human cancer cell growth inhibitory phakellistatin 4 from the Western Pacific sponge Phakellia costata. Heterocycles 40:501–506

    CAS  Google Scholar 

  35. Pettit G, Xu JP, Cichacz Z, Williams M, Dorsaz A, Brune D, Boyd M, Cerny R (1994) Antineoplastic agents 315. Isolation and structure of the marine sponge cancer cell growth inhibitor phakellistatin 5. Bioorg Med Chem Lett 4:2091–2096

    CAS  Google Scholar 

  36. Pettit G, Xu JP, Cichacz Z, Williams M, Chapuis J, Cerny R (1994) Antineoplastic agents 323. Isolation and structure of phakellistatin 6 from a Chuuk Archipelago marine sponge. Bioorg Med Chem Lett 4:2677–2682

    CAS  Google Scholar 

  37. Pettit G, Xu JP, Dorsaz A, Williams M, Boyd M, Cerny R (1995) Isolation and structure of the human cancer cell growth inhibitory cyclic decapeptides phakellistatins 7, 8, and 9. Bioorg Med Chem Lett 5:1330–1344

    Google Scholar 

  38. Pettit G, Tan R, Ichihara Y, Williams M, Doubek D, Tacket L, Schmit J, Cerny R, Boyd M, Hooper J (1995) Antineoplastic agents, 325. Isolation and structure of the human cancer cell growth inhibitory cyclic octapeptides phakellistatin 10 and 11 from Phakellia sp. J Nat Prod 68:961–965

    Google Scholar 

  39. Pettit G, Tan R (2003) Antineoplastic agents 390. Isolation and structure of phakellistatin 12 from a Chuuk Archipelago marine sponge. Bioorg Med Chem Lett 13:685–688

    CAS  Google Scholar 

  40. Pettit G, Tan R (2005) Isolation and structure of phakellistatin 14 from the Western pacific marine sponge Phakellia sp. J Nat Prod 68:60–63

    CAS  Google Scholar 

  41. Li WL, Yi YH, Wu HM, Xu QZ, Tang HF, Zhou DZ, Lin HW, Wang ZH (2003) Isolation and structure of the cytotoxic cycloheptapeptide phakellistatin 13. J Nat Prod 66:146–148

    CAS  Google Scholar 

  42. Mau C, Nakao Y, Yoshida W, Scheuer P (1996) Waiakeamide, a cyclic hexapeptide from the sponge Ircinia dendroides. J Org Chem 61:6302–6304

    CAS  Google Scholar 

  43. Rashid MA, Gustafson KR, Boswell J, Boyd MR (2000) Haligramides A and B, two new cytotoxic hexapeptides from the marine sponge Haliclona nigra. J Nat Prod 63:956–959

    CAS  Google Scholar 

  44. Fusetani N, Matsunaga S (1990) Cyclotheonamides, potent thrombin inhibitors, from a marine sponge Theonella sp. J Am Chem Soc 112:7053–7054

    CAS  Google Scholar 

  45. Maryanoff B, Qiu XY, Padmanabhan KP, Tulinsky A, Almond H Jr., Andrade-Gordon P, Greco M, Kauffman J, Nicolaou K, Liu A, Brungs P, Fusetani N (1993) Molecular basis for the inhibition of human α-thrombin by the macrocyclic peptide cyclotheonamide A. Proc Natl Acad Sci USA 90:8048–8052

    CAS  Google Scholar 

  46. Maryanoff B, Zhang HC, Greco M, Glover K, Kauffman J, Andrade-Gordon P (1995) Cyclotheonamide derivatives: synthesis and thrombin inhibition. Exploration of specific structure-function issues. Bioorg Med Chem 3:1025–1038

    CAS  Google Scholar 

  47. Lee A, Hagihara M, Karmacharya R, Albers M, Schreiber S, Clardy J (1993) Atomic structure of the trypsin-cyclotheonamide A complex: lessons for the design of serine protease inhibitors. J Am Chem Soc 115:12619–12620

    CAS  Google Scholar 

  48. Nakao Y, Matsunaga S, Fusetani N (1995) Three more cyclotheonamides, C, D, and E, potent thrombin inhibitors from the marine sponge Theonella swinhoei. Bioorg Med Chem 3:1115–1122

    CAS  Google Scholar 

  49. Nakao Y, Oku N, Matsunaga S, Fusetani N (1998) Cyclotheonamides E2 and E3, new potent serine protease inhibitors from the marine sponge of the genus Theonella. J Nat Prod 61:667–670

    CAS  Google Scholar 

  50. Murakami Y, Takei M, Shindo K, Kitazume C, Tanaka J, Higa T, Fukamachi H (2002) Cyclotheonamides E4 and E5, new potent tryptase inhibitors from an Ircinia species of sponge. J Nat Prod 65:259–261

    CAS  Google Scholar 

  51. Wipf P, Kim H (1993) Total synthesis of cyclotheonamide A. J Org Chem 58:5592–5594

    CAS  Google Scholar 

  52. Fusetani N, Sugawara T, Matsunaga S (1991) Orbiculamide A: a novel cytotoxic cyclic peptide from a marine sponge Theonella sp. J Am Chem Soc 113:7812–7813

    Google Scholar 

  53. Chill L, Kashman Y (1997) Oriamide, a new cytotoxic cyclic peptide containing a novel amino acid from the marine sponge Theonella sp. Tetrahedron 53:16147–16152

    CAS  Google Scholar 

  54. Kobayashi J, Sato M, Ishibashi M, Shigemori H, Nakamura T, Ohizumi Y (1991) Keramamide A, a novel peptide from the Okinawan marine sponge Theonella sp. J Chem Soc Perkin Trans 1:2609–2611

    Google Scholar 

  55. Kobayashi J, Itagaki F, Shigemori H, Ishibashi M, Takahashi K, Ogura M, Nagasawa S, Nakamura T, Hirota H, Ohta T, Nozoe S (1991) Keramamides B-D: novel peptides from the Okinawan marine sponge Theonella sp. J Am Chem Soc 113:7812–7813

    CAS  Google Scholar 

  56. Itagaki F, Shigemori H, Ishibashi M, Nakamura T, Sasaki T, Kobayashi J (1992) Keramamide F, a new thiazole-containing peptide from the Okinawan marine sponge Theonella sp. J Org Chem 57:5540–5542

    CAS  Google Scholar 

  57. Kobayashi J, Itagaki F, Shigemori H, Takao T, Shimonishi Y (1995) Keramamides E, G, H, and J, new cyclic peptides containing an oxazole or a thiazole ring from a Theonella sponge. Tetrahedron 51:2525–2532

    CAS  Google Scholar 

  58. Uemoto H, Yahiro Y, Shigemori H, Tsuda M, Takao T, Shimonishi Y, Kobayashi J (1998) Keramamides K and L, new cyclic peptides containing unusual tryptophan residue from Theonella sponge. Tetrahedron 54:6719–6724

    CAS  Google Scholar 

  59. Tsuda M, Ishiyama H, Masuko K, Takao T, Shimonishi Y, Kobayashi J (1999) Kermamides M and N, two new cyclic peptides with a sulphate ester from Theonella sponge. Tetrahedron 55:12543–12548

    CAS  Google Scholar 

  60. De Silva E, Williams D, Andersen R (1992) Motuporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea sponge Theonella swinhoei Gray. Tetrahedron Lett 33:1561–1564

    Google Scholar 

  61. Maynes J, Luu H, Cherney M, Andersen R, Williams D, Holmes C, James M (2006) Crystal structures of protein phosphatase-1 bound to motuporin and dihydromicrocystin-LA: elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins. J Mol Biol 356:111–120

    CAS  Google Scholar 

  62. Valentekovich R, Schreiber S (1995) Enantiospecific total synthesis of the protein phosphatase inhibitor motuporin. J Am Chem Soc 117:9069–9070

    CAS  Google Scholar 

  63. Samy R, Kim H, Brady M, Toogood P (1999) Total synthesis of motuporin and 5-L-Ala.-motuporin. J Org Chem 64:2711–2728

    CAS  Google Scholar 

  64. Hu T, Panek J (2002) Enantioselective synthesis of the protein phosphatase inhibitor (-)-motuporin. J Am Chem Soc 124:11368–11378

    CAS  Google Scholar 

  65. Rinehard K, Harada K, Namikoshi M, Chen C, Harvis C (1988) Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc 110:8557–8558

    Google Scholar 

  66. Ohta T, Suioka E, Iida N, Komori A, Suganuma M, Nishiwaki R, Tatematsu M, Kim S, Carmichael W, Fujiki H (1994) Nodularin, a potent inhibitor of protein phosphatases 1 and 2 A, is a new environmental carcinogen in male F344 rat liver. Cancer Res 54:6402–6406

    CAS  Google Scholar 

  67. Moffitt M, Neilan B (2004) Characterization of nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70:6353–6362

    CAS  Google Scholar 

  68. Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan B (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764

    CAS  Google Scholar 

  69. Gehringer M, Adler L, Roberts A, Moffitt M, Mihali T, Mills T, Fieker C, Neilan B (2012) Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J 6:1834–1847

    CAS  Google Scholar 

  70. Bewley CA, Debitus C, Faulkner DJ (1994) Microsclerodermins A and B. Antifungal cyclic peptides from the Lithistid sponge Microscleroderma sp. J Am Chem Soc 116:7631–7636

    CAS  Google Scholar 

  71. Schmidt E, Faulkner, DJ (1998) Microsclerodermins C–E, antifungal cyclic peptides from the Lithistid marine sponge Theonella sp. and Microscleroderma sp. Tetrahedron 54:3043–3056

    CAS  Google Scholar 

  72. Qureshi A, Colin P, Faulkner DJ (2000) Microsclerodermins F-I, antitumor and antifungal cyclic peptides from the Lithistid sponge Microsclerodermia sp. Tetrahedron 56:3679–3685

    CAS  Google Scholar 

  73. Kimura M, Wakimoto T, Egami Y, Tan K, Ise Y, Abe I (2012) Calyxamides A and B, cytotoxic cyclic peptides from the marine sponge Discodermia calyx. J Nat Prod 75:290–294

    CAS  Google Scholar 

  74. Gunasekera S, Pomponi S, McCarthy P (1994) Discobahamins A and B, new peptides from the Bahamian deep water marine sponge Discodermia sp. J Nat Prod 57:79–83

    CAS  Google Scholar 

  75. Clark W, Corbett T, Valeriote F, Crews P (1997) Cyclocinamide A, an unusual cytotoxic halogenated hexapeptide from the marine sponge Psammocinia. J Am Chem Soc 119:9285–9286

    CAS  Google Scholar 

  76. Grieco PA, Reilly M (1998) Studies related to the absolute configuration of cyclocinamide A: total synthesis of 4(R),11(R)-cyclocinamide A. Tetrahedron Lett 39:8925–8928

    CAS  Google Scholar 

  77. Curzon S (2013) Total synthesis of nominal 4S,7R,11S,14R cyclocinamide B and analysis of three stereoisomers of cyclocinamide A. Electronic theses and dissertations, University of California, Santa Cruz. http://www.escholarship.org/uc/item/6v6n5xg. Accessed 29 Oct 2013

  78. Rubio B, Robinson S, Avalos C, Valeriote F, de Voogd N, Crews P (2008) Revisiting the sponge sources, stereostructure, and biological activity of cyclocinamide A. J Nat Prod 71:1475–1478

    CAS  Google Scholar 

  79. Laird DW, LaBarbera DV, Feng X, Bugni TS, Harper MK, Ireland CM (2007) Halogenated cyclic peptides isolated from the sponge Corticum sp. J Nat Prod 70:741–746

    CAS  Google Scholar 

  80. Garcia J, Curzon S, Watts K, Konopelski J (2012) Total synthesis of nominal (11S)- and (11R)-cyclocinamide A. Org Lett 14:2054–2057

    CAS  Google Scholar 

  81. Crews P, Manes L, Boehler M (1986) Jasplakinolide, a cyclodepsipeptide from the marine sponge, Jaspis sp. Tetrahedron Lett 27:2797–2800

    CAS  Google Scholar 

  82. Zabriskie, T, Klocke J, Ireland C, Marcus A, Molinski T, Faulkner D, Xu C, Clardy J (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J Am Chem Soc 108:3123–3124

    CAS  Google Scholar 

  83. Robinson S, Morinaka B, Amagata T, Tenney K, Bray W, Gassner N, Lokey R, Crews P (2010) New structures and bioactivity properties of jasplakinolide (jaspamide) analogues from marine sponges. J Med Chem 53:1651–1661

    CAS  Google Scholar 

  84. Andavan GSB, Lemmens-Gruber R (2010) Cyclodepsipeptides from marine sponges: natural agents for drug research. Mar Drugs 8:810–834

    Google Scholar 

  85. Fabian I, Halperin D, Lefter S, Mittelman L, Altstock R, Seaon O, Tsarfaty I (1999) Alteration of actin organization by jaspamide inhibits ruffling, but not phagocytosis or oxidative burst, in HL-60 cells and human monocytes. Blood 93:3994–4005

    CAS  Google Scholar 

  86. Grieco P, Hon YS, Perez-Medrano A (1988) A convergent, enantiospecific total synthesis of the novel cyclodepsipeptide (+)-jasplakinolide (jaspamide) J Am Chem Soc 110:1630–1631

    CAS  Google Scholar 

  87. Bubb M, Senderowicz A, Sausville E, Duncan K, Korn E (1994) Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269:14869–14871

    CAS  Google Scholar 

  88. Bubb M, Spector I, Beyer B, Fosen K (2000) Effects of jasplakinolide on the kinetics of actin polymerization: an explanation for certain in vivo observations. J Biol Chem 275:5163–5170

    CAS  Google Scholar 

  89. Allingham JS, Klenchin VA, Rayment I (2006) Actin-targeting natural products: structures, properties and mechanisms of action. Cell Mol Life Sci 63:2119–2134

    CAS  Google Scholar 

  90. Odaka C, Sanders M, Crews P (2000) Jasplakinolide iduces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin Diagn Lab Immunol 7:947–952

    CAS  Google Scholar 

  91. Faulkner DJ (2000) Marine pharmacology. Anton Leeuw 77:135–145

    CAS  Google Scholar 

  92. Ghosh A, Dawson Z, Moonm DK, Bai R, Hamel E (2010) Synthesis and biological evalution of new jasplakinolide (jaspamide) analogues. Bioorg Med Chem Lett 20:5104–5107

    CAS  Google Scholar 

  93. Ebada S, Wray V, de Voogd N, Deng ZW, Lin WH, Proksch P (2009) Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar Drugs 7:435–444

    CAS  Google Scholar 

  94. Watts, K, Morinaka B, Amagata T, Robinson S, Tenney K, Bray W, Gassner N, Media J, Valeriote F, Crews P (2011) Biostructural features of additional jasplakinolide (jasplamide) analogues. J Nat Prod 74:341–351

    CAS  Google Scholar 

  95. Chan WR, Tinto WF (1987) Stereostructures of geodiamolides A and B, novel cyclodepsipeptides from the marine sponge Geodia sp. J Org Chem 52:3091–3093

    CAS  Google Scholar 

  96. Tanaka C, Tanaka J, Bolland R, Marriott G, Higa T (2006) Seragamides A–F, new actin-targeting depsipeptides from the sponge Suberites japonicus Thiele. Tetrahedron 62:3536–3542

    CAS  Google Scholar 

  97. Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie T, Blocker H, Muller R (2006) Molecular and biochemical studies of chondramide formation—highly cytotoxic natural products from Chondromyces crocatus Cm c5. Chem Biol 14:667–681

    Google Scholar 

  98. Matsunaga S, Fusetani N, Konosu S (1984) Bioactive marine metabolites, VI. Structure elucidation of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis. Tetrahedron Lett 25:5165–5168

    CAS  Google Scholar 

  99. Matsunaga S, Fusetani N, Konosu S (1985) Bioactive marine metabolites, IV. Isolation and the amino acid composition of discodermin A, an antimicrobial peptide, from the marine sponge Discodermia kiiensis. J Nat Prod 48:236–241

    CAS  Google Scholar 

  100. Matsunaga S, Fusetani N, Konosu S (1985) Bioactive marine metabolites, VII. Structures of discodermin B, C, and D, antimicrobial peptides from the marine sponge Discodermia kiiensis. Tetrahedron Lett 26:855–856

    CAS  Google Scholar 

  101. Ryu G, Matsunaga S, Fusetani N (1994) Discodermin E, a cytotoxic and antimicrobial tetradecapeptide, from the marine sponge Discodermia kiiensis. Tetrahedron Lett 35:8251–8254

    CAS  Google Scholar 

  102. Ryu G, Matsunaga S, Fusetani N (1994) Discodermin F–H, Cytotoxic and antimicrobial tetradecapeptides from the marine sponge Discodermia kiiensis: structure revision of discodermins A–D. Tetrahedron 50:13409–13416

    CAS  Google Scholar 

  103. Gulavita NK, Gunasekera SP, Pomponi SA, Robinson EV (1992) Polydiscamide A: A new bioactive depsipeptide from the marine sponge Discodermia sp. J Org Chem 57:1767–1772

    CAS  Google Scholar 

  104. Feng Y, Carroll AR, Pass DM, Archbold JK, Avery VM, Quinn RJ (2008) Polydiscamides B–D from a marine sponge Ircinia sp. as potent human sensory neuron-specific G protein coupled receptor agonists. J Nat Prod 71:8–11

    CAS  Google Scholar 

  105. Li H, Matsunaga S, Fusetani N (1995) Halicylindramides A–C, antifungal and cytotoxic depsipeptides from the marine sponge Halichondria cylindrata. J Med Chem 38:338–343

    CAS  Google Scholar 

  106. Li H, Matsunaga S, Fusetani N (1996) Halicylindramides D and E, antifungal peptides from the marine sponge Halichondria cylindrata. J Nat Prod 59:163–166

    CAS  Google Scholar 

  107. Rashid MA, Gustafson KR, Cartner LK, Shigematsu N, Pannell LK, Boyd MR (2001) Microspinosamide, a new HIV-inhibitory cyclic depsipeptide from the marine sponge Sidonops microspinosa. J Nat Prod 64:117–121

    CAS  Google Scholar 

  108. Hamada T, Matsunaga S, Yano G, Fusetani N (2006) Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc 127:110–118

    Google Scholar 

  109. Hamada T, Matsunaga S, Fujiwara M, Fujita K, Hirota H, Schmucki R, Güntert P, Fusetani N (2010) Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J Am Chem Soc 132:12941–12945

    CAS  Google Scholar 

  110. Sato K, Horibe K, Amano K, Mitusi-Saito M, Hori M, Matsunaga S, Fusetani N, Ozaki H, Karaki H (2001) Membrane permeabilization induced by discodermin A, a novel marine bioactive peptide. Toxicon 39:259–264

    CAS  Google Scholar 

  111. Zampella A, D’Auria MV, Gomez-Paloma L, Casapullo A, Minale L, Debitus C, Henin Y (1996) Callipeltin A, an anti-HIV cyclic depsipeptide from the New Caledonian lithistida sponge Callipelta sp. J Am Chem Soc 118:6202–6209

    CAS  Google Scholar 

  112. D’Auria MV, Zampella A, Gomez-Paloma L, Minale L (1996) Callipeltins B and C: bioactive peptides from a marine lithistida sponge Callipelta sp. Tetrahedron 52:9589–9596

    Google Scholar 

  113. Trevisia L, Cargnellia G, Ceolottob G, Papparellab I, Semplicinib A, Zampellac A, D’Auriac MV, Luciani S (2004) Callipeltin A: sodium ionophore effect and tension development in vascular smooth muscle. Biochem Pharmacol 68:1331–1338

    Google Scholar 

  114. Sepe V, D’Orsi RD, Borbone N, D’Auria MV, Bifulco G, Monti MC, Catania A, Zampella A (2006) Callipeltins F-I: new antifungal peptides from the marine sponge Latrunculia sp. Tetrahedron 62:833–840

    CAS  Google Scholar 

  115. D’Auria MV, Sepe V, D’Orsi RD, Bellotta F, Debitus C, Zampella A (2007) Isolation and structural elucidation of callipeltins J–M: antifungal peptides from the marine sponge Latrunculia sp. Tetrahedron 63:131–140

    Google Scholar 

  116. Krishnamoorthy R, Vezquez-Serrano LD, Turk JA, Kowalski JA, Benson AG, Breaux NT, Lipton MA (2006) Solid-phase total synthesis and structure proof of callipeltin B. J Am Chem Soc 128:15392–15393

    CAS  Google Scholar 

  117. Çalimsiz S, Morales Ramos ÁIM, Lipton MA (2006) Solid-phase synthesis and configurational reassignment of callipeltin E. Implications of the structures of callipeltins A and B. J Org Chem 71:6351–6356

    Google Scholar 

  118. Kikuchi M, Nosaka K, Akaji K, Konno H (2011) Solid phase total synthesis of callipeltin E isolated from marine sponge Latrunculia sp. Tetrahedron Lett 52:3872–3875

    CAS  Google Scholar 

  119. Oku N, Gustafson KR, Cartner LK, Wilson J. A, Shigematsu N, Hess S, Pannell LK, Boyd MR, McMahon JB (2004) Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge Neamphius huxleyi. J Nat Prod 67:1407–1411

    CAS  Google Scholar 

  120. Yamano Y, Arai M, Kobayashi M (2012) Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp. Bioorg Med Chem Lett 22:4877–4881

    CAS  Google Scholar 

  121. Tran TD, Pham NB, Fechner G, Zencak D, Vu HT, Hooper JNA, Quinn RJ (2012) Cytotoxic cyclic depsipeptides from the Australian marine sponge Neamphius huxleyi. J Nat Prod 75:2200–2208

    CAS  Google Scholar 

  122. Ford PW, Gustafson KR, McKee TC, Shigematsu N, Maurizi LK, Pannell LK, Williams DE, Dilip de Silva ED, Lassota P, Allen TM, Van Soest R, Anderson RJ, Boyd MR (1999) Papuamides A–D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J Am Chem Soc 121:5899–5909

    CAS  Google Scholar 

  123. Prasad P, Aalbersberg W, Feussner K-D, Van Wagoner RM (2011) Papuamides E and F, cytotoxic depsipeptides from the marine sponge Melophlus sp. Tetrahedron 67:8529–8531

    CAS  Google Scholar 

  124. Krishnamoorthy R, Richardson BL, Lipton MA (2007) Synthesis and cytotoxicity of desmethoxycallipeltin B: Lack of a quinone methide for the cytotoxicity of callipeltin B. Bioorg Med Cham Lett 17:5136–5138

    CAS  Google Scholar 

  125. Berer N, Rudi A, Goldberg I, Benayahu Y, Kashman Y (2004) Callynormine A, a new marine cyclic peptide of a novel class. Org Lett 6:2543–2545

    CAS  Google Scholar 

  126. Ibrahim SRM, Edrada-Ebel RA, Mohamed GA, Youssef DTA, Wray V, Proksch P (2008) Callyaerin G, a new cytotoxic cyclic peptide from the marine sponge Callyspongia aerizusa. ARKIVOC 164–171

    Google Scholar 

  127. Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoscheke C, Lin W, Wray V, Edrada-Edel R, Proksch R (2010) Callyaerins A–F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg Med Chem 18:4947–4956

    CAS  Google Scholar 

  128. Bewley CA, He H, Williams DH, Faulkner DJ (1996) Aciculitins AC: cytotoxic and antifungal cyclic peptides from the lithistid sponge Aciculites orientalis. J Am Chem Soc 118:4314–4321

    CAS  Google Scholar 

  129. Matsunaga S, Fusetani N, Hashimoto K, Walchli M (1989) Theonellamide F. A novel antifungal bicyclic peptide from a marine sponge Theonella sp. J Am Chem Soc 111:2582–2588

    CAS  Google Scholar 

  130. Matsunaga S, Fusetani N (1995) Theonellamides AE, cytotoxic bicyclic peptides, from a marine sponge Theonella sp. J Org Chem 60:1177–1181

    CAS  Google Scholar 

  131. Bewley CA, Faulkner DJ (1994) Theonegramide, an antifungal glycopeptide from the Philippine lithistid sponge Theonella swinhoei. J Org Chem 59:4849–4852

    CAS  Google Scholar 

  132. Schmidt EW, Bewley CA, Faulkner DJ (1998) Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei from Palau and Mozambique. J Org Chem 63:1254–1258

    CAS  Google Scholar 

  133. Nishimura S, Arita Y, Honda M, Iwamoto K, Matsuyama A, Shirai A, Kawasaki H, Kakeya H, Kobayashi T, Matsunaga S, Yoshida M (2010) Marine antifungal theonellamides target 3β-hydroxysterol to activate Rho1 signaling. Nat Chem Biol 6:519–526

    CAS  Google Scholar 

  134. Espiritu RA, Matsumori N, Murata M, Nishimura S, Kakeya H, Matsunaga S, Yoshida M (2013) Interaction between the marine sponge cyclic peptide theonellamide A and sterols in lipid bilayers as viewed by surface plasmon resonance and solid-state 2H nuclear magnetic resonance. Biochemistry 52:2410–2418

    CAS  Google Scholar 

  135. Kobayashi M, Aoki S, Ohyabu N, Kurosu M, Wang W, Kitagawa I (1994) Arenastatin A, a potent cytotoxic depsipeptide from the okinawan marine sponge Dysidea arenaria. Tetrahedron Lett 35:7969–7972

    CAS  Google Scholar 

  136. Koiso Y, Morita K, Kobayashi M, Wang W, Ohyabu N, Iwasaki S (1996) Effects of arenastatin A and its synthetic analogs on microtubule assembly. Chem Biol Interact 102:183–191

    CAS  Google Scholar 

  137. Morita K, Koiso Y, Hashimoto Y, Kobayashi M, Wang W, Ohyabu N, Iwasaki S (1997) Interaction of arenastatin A with porcine brain tubulin. Biol Pharm Bull 20:171–174

    CAS  Google Scholar 

  138. Murakami N, Wang W, Ohyabu N, Ito T, Tamura S, Aoki S, Kobayashi M, Kitagawa I (2000) Synthesis of amide analogs of arenastatin A. Tetrahedron 56:9121–9128

    Google Scholar 

  139. Kobayashi M, Wang WEIQI, Ohyabu N, Kurosu M, Kitagawa I (1995) Improved total synthesis and structure-activity relationship of arenastatin A, a potent cytotoxic spongean depsipeptide. Chem Pharm Bull 43:1598

    CAS  Google Scholar 

  140. Murakami N, Wang W, Tamura S, Kobayashi M (2000) Synthesis and biological property of carba and 20-deoxo analogues of arenastatin A. Bioorg Med Chem Lett 10:1823–1826

    Google Scholar 

  141. Murakami N, Tamura S, Koyama K, Sugimoto M, Maekawa R, Kobayashi M (2004) New analogue of arenastatin A, a potent cytotoxic spongean depsipeptide, with anti-tumor activity. Bioorg Med Chem Lett 14:2597–2601

    CAS  Google Scholar 

  142. Kotoku N, Kato T, Narumi F, Ohtani E, Kamada S, Aoki S, Okada N, Nakagawa S, Kobayashi M (2006) Synthesis of 15,20-triamide analogue with polar substituent on the phenyl ring of arenastatin A, an extremely potent cytotoxic spongean depsipeptide. Bioorg Med Chem 14:7446–7457

    CAS  Google Scholar 

  143. Golakoti T, Ogino J, Heltzel CE, Lehusebo T, Jensen CM, Larsen LK, Patterson GML, Moore RE, Mooberry SL, Corbett TH, Valeriote FA (1995) Structure determination, conformational-analysis, chemical-stability studies, and antitumor evaluation of the cryptophycins: isolation of 18 new analogs from Nostoc sp. strain GSV-224. J Am Chem Soc 117:12030–12049

    CAS  Google Scholar 

  144. Subbaraju GV, Golakoti T, Patterson GM, Moore RE (1997) Three new cryptophycins from Nostoc sp. GSV 224. J Nat Prod 60:302–305

    CAS  Google Scholar 

  145. Chaganty S, Golakoti T, Heltzel C, Moore RE, Yoshida WY (2004) Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp. GSV 224. J Nat Prod 67:1403–1406

    CAS  Google Scholar 

  146. Schwartz RE, Hirsch CF, Sesin DF, Flor JE, Chartrain M, Fromtling RE, Harris GH, Salvatore MJ, Liesch JM, Yudin K (1990) Pharmaceuticals from cultured algae. J Ind Microbial 5:113–123

    CAS  Google Scholar 

  147. Beck ZQ, Aldrich CC, Magarvey NA, Georg GI, Sherman DH (2005) Chemoenzymatic synthesis of cryptophycin/arenastatin natural products. Biochemistry 44:13457–13466

    CAS  Google Scholar 

  148. Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209

    CAS  Google Scholar 

  149. Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178

    Google Scholar 

  150. Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362

    CAS  Google Scholar 

  151. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunagas S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227

    CAS  Google Scholar 

  152. Freeman MF, Gurgui C, Helf MJ, Morinaka BI, Uria AR, Oldham NJ, Sahl H-G, Matsunaga S, Piel J (2012) Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338:387–390

    CAS  Google Scholar 

  153. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens U, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crüsemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62

    Google Scholar 

  154. Wakimoto T, Egami Y, Nakashima Y, Wakimoto Y, Mori T, Awakawa T, Ito T, Kenmoku H, Asakawa Y, Piel J, Abe I (2014) Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat. Chem. Biol. 10: 648–655

    Google Scholar 

  155. Inoue M, Shinohara N, Tanabe S, Takahashi T, Okura K, Itoh H, Mizoguchi Y, Iida M, Lee N, Matsuoka S (2010) Total synthesis of the large non-ribosomal peptide polytheonamide B. Nat Chem Biol 2:280–285

    CAS  Google Scholar 

  156. Pelay-Gimeno M, García-Ramos Y, Martin M. J, Spengler J, Molina-Guijarro JM, Munt S, Francesch AM, Cuevas C, Tulla-Puche J, Albericio F (2013) The first total synthesis of the cyclodepsipeptide pipecolidepsin A. Nat Commun 4:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Wakimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wakimoto, T., Tan, K., Tajima, H., Abe, I. (2015). Cytotoxic Cyclic Peptides from the Marine Sponges. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_6

Download citation

Publish with us

Policies and ethics