Skip to main content

Biodiesel Production in Stirred Tank Chemical Reactors: A Numerical Simulation

  • Conference paper
  • First Online:
New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 312))

  • 2504 Accesses

Abstract

The biodiesel production was performed in stirred tank chemical reactor by numerical simulation. The main results are that the percentage of conversion from triglyceride to biodiesel is approximately of 82 % when the molar flow ratio between triglyceride/alcohol is 1:5. This system displays only one equilibrium point. Since there are imaginary eigenvalues in the Jacobian matrix analysis, the equilibrium point is unstable. The biodiesel production in stirred tank chemical reactor is good because the settling time is short, and has higher conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. T. Benavides and U. Diwekar, “Optimal control of biodiesel production in a batch reactor: Part I: Deterministic control”, Fuel, vol. 94, pp. 211–217, 2012.

    Article  Google Scholar 

  2. W. Cao, H. Han, and J. Zhang, “Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent”, Fuel, vol. 84, pp. 347–351, 2005.

    Article  Google Scholar 

  3. F. Omota, A. C. Dimian, and A. Bliek, “Fatty acid esterification by reactive distillation. Part 1: equilibrium-based design”, Chemical Engineering Science, vol. 58, pp. 3159–3174, 2003.

    Article  Google Scholar 

  4. M. Vázquez-Ojeda, J. G. Segovia-Hernández, S. Hernández, A. Hernández-Aguirre, and R. Maya-Yescas, “Optimization and Controllability Analysis of Thermally Coupled Reactive Distillation Arrangements with Minimum Use of Reboilers”, Industrial & Engineering Chemistry Research, vol. 51, pp. 5856–5865, 2012.

    Article  Google Scholar 

  5. A. Velasco-Pérez, J. Álvarez-Ramírez, and R. Solar-González, “Control múltiple entrada una salida (MISO) de un CSTR”, Revista mexicana de ingeniería química, vol. 10, pp. 321–331, 2011.

    Google Scholar 

  6. R. Aris and N. R. Amundson, “An analysis of chemical reactor stability and control—III: The principles of programming reactor calculations. Some extensions”, Chemical Engineering Science, vol. 7, pp. 148–155, 1958.

    Article  Google Scholar 

  7. J. Alvarez-Ramirez and H. Puebla, “On classical PI control of chemical reactors”, Chemical Engineering Science, vol. 56, pp. 2111–2121, 2001.

    Article  Google Scholar 

  8. J. Alvarez-Ramirez, J. Valencia, and A. Morales, “Composition cascade control for chemical reactors”, International Journal of Robust and Nonlinear Control, vol. 12, pp. 1145–1171, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. H. Fogler, Elements of Chemical Reaction Engineering, 4th New Jersey: Prentice Hall, 2006.

    Google Scholar 

  10. A. Bajaj, “Nonlinear System Analysis” in Encyclopedia of Vibration, G. B. Editor-in-Chief: Simon, Ed., ed Oxford: Elsevier, 2001, pp. 952–966.

    Google Scholar 

  11. W. Harmon Ray and C. M. Villa, “Nonlinear dynamics found in polymerization processes — a review”, Chemical Engineering Science, vol. 55, pp. 275–290, 2000.

    Article  Google Scholar 

  12. O. Makarenkov and J. S. W. Lamb, “Dynamics and bifurcations of nonsmooth systems: A survey”, Physica D: Nonlinear Phenomena, vol. 241, pp. 1826–1844, 2012.

    Article  MathSciNet  Google Scholar 

  13. M. P. Vega, M. R. C. Fortunato1, and M. C. Amaral, “Bifurcation and Stability Analysis of Coupled NonIsothermal CSTRs - Open/Closed Loop Studies” presented at the 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur Congress on Process Systems Engineering, Village Rio das Pedras, Club Med, Rio de Janeiro, 2005.

    Google Scholar 

  14. M. Haragus and G. Iooss, “Bifurcation Theory”, in Encyclopedia of Mathematical Physics, F. Editors-in-Chief: Jean-Pierre, L. N. Gregory, and T. Tsou Sheung, Eds., ed Oxford: Academic Press, 2006, pp. 275–281.

    Google Scholar 

  15. G. Schmidt, “Seydel, R., From Equilibrium to Chaos. Practical Bifurcation and Stability Analysis. New York etc., Elsevier 1989. XV, 367 pp., £ 37.—. ISBN 0–444–01250–8”, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 71, pp. 418–418, 1991.

    Google Scholar 

  16. M. Agarwal, K. Singh, and S. P. Chaurasia, “Simulation and sensitivity analysis for biodiesel production in a reactive distillation column”, Polish Journal of Chemical Technology, vol. 14, pp. 59–65, 2012.

    Article  Google Scholar 

  17. N. de Lima da Silva, E. Ccopa Rivera, C. B. Batistella, D. Ribeiro de Lima, R. Maciel Filhob, and M. R. Wolf Maciel, “Biodiesel production from vegetable oils: Operational strategies for large scale systems”, in 18th European Symposium on Computer Aided Process Engineering – ESCAPE 18, Lyon, France, 2008, pp. 1001–1007.

    Google Scholar 

  18. H. Noureddini and D. Zhu, “Kinetics of transesterification of soybean oil”, Journal of the American Oil Chemists Society, vol. 74, pp. 1457–1463, 1997/11/01 1997.

    Google Scholar 

  19. P. T. Benavides and U. Diwekar, “Optimal control of biodiesel production in a batch reactor: Part II: Stochastic control”, Fuel, vol. 94, pp. 218–226, 4// 2012.

    Google Scholar 

  20. J. Álvarez-Ramírez and A. R. Méndez, “Composition Linear Control in Stirred Tank Chemical Reactors”, New Mathematics and Natural Computation, vol. 03, pp. 385–398, November 2007 2007.

    Google Scholar 

  21. R. Aris and N. R. Amundson, “An analysis of chemical reactor stability and control—I: The possibility of local control, with perfect or imperfect control mechanisms”, Chemical Engineering Science, vol. 7, pp. 121–131, 1958.

    Article  Google Scholar 

Download references

Acknowledgment

The author is grateful to Dr. Ever Peralta for his revisions in the text. This work was support in part by COMECYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Regalado-Méndez .

Editor information

Editors and Affiliations

Appendix

Appendix

The particular model for the case study is governed by the next set of ordinary differential equations.

$$ \begin{array}{l}\frac{d{x}_1}{dt}={\gamma}_1-\theta {x}_1-{\beta}_1{x}_1{x}_2+{\beta}_2{x}_3{x}_4\\ {}\frac{d{x}_2}{dt}={\gamma}_2-\theta {x}_2-{\beta}_1{x}_1{x}_2+{\beta}_2{x}_3{x}_4\\ {}\kern2.4em -{\beta}_3{x}_3{x}_2+{\beta}_4{x}_5{x}_6-{\beta}_5{x}_5{x}_2+{\beta}_6{x}_7{x}_8\\ {}\frac{d{x}_3}{dt}={\gamma}_3-\theta {x}_3+{\beta}_1{x}_1{x}_2-{\beta}_2{x}_3{x}_4\\ {}\kern2.4em +{\beta}_3{x}_3{x}_2-{\beta}_4{x}_5{x}_6\kern1.56em \\ {}\frac{d{x}_4}{dt}={\gamma}_4-\theta {x}_5+{\beta}_1{x}_1{x}_2-{\beta}_2{x}_3{x}_4\\ {}\frac{d{x}_5}{dt}={\gamma}_5-\theta {x}_5+{\beta}_3{x}_3{x}_2-{\beta}_4{x}_5{x}_6\\ {}\kern2.4em +{\beta}_5{x}_5{x}_2-{\beta}_6{x}_7{x}_8\\ {}\frac{d{x}_6}{dt}={\gamma}_6-\theta {x}_6+{\beta}_3{x}_3{x}_2-{\beta}_4{x}_5{x}_6\\ {}\frac{d{x}_7}{dt}={\gamma}_7-\theta {x}_7+{\beta}_5{x}_5{x}_2-{\beta}_6{x}_7{x}_8\\ {}\frac{d{x}_8}{dt}={\gamma}_8-\theta {x}_8+{\beta}_5{x}_5{x}_2-{\beta}_6{x}_7{x}_8\\ {}\frac{d{x}_9}{dt}={\gamma}_9-\theta {x}_9+\varDelta {H}_{rxn}\Big[{\beta}_1{x}_1{x}_2-{\beta}_2{x}_3{x}_4\;\\ {}\kern2.4em +{\beta}_3{x}_3{x}_2-{\beta}_4{x}_5{x}_6+{\beta}_5{x}_5{x}_2-{\beta}_6{x}_7{x}_8\Big]+u\left({T}_c-{x}_9\right)\end{array} $$
(6)

Where: β i  = k o i  exp(−E A, i /Rx 9and γ i  = θx i,0

Using the expansion Taylor series the dynamic system governing by (6) can be represented by (7).

$$ \begin{array}{l}\frac{d\underset{\sim }{x}}{dt}=\underset{\sim }{f}\\ {}\underset{\sim }{f}=\underset{\sim }{f}{\underset{\sim }{x}}_e+{\left.A\right|}_{{\underset{\sim }{x}}_e}\left[\underset{\sim }{x}-{\underset{\sim }{x}}_e\right]\end{array} $$

Reordering the before equation

$$ \frac{d\underset{\sim }{x}}{dt}=\underset{\underset{\sim }{A}{\underset{\sim }{x}}_e}{\underbrace{\left.\left[\begin{array}{ccc}\hfill \frac{\partial {f}_1}{\partial {x}_1}\hfill & \hfill \cdots \hfill & \hfill \frac{\partial {f}_1}{\partial {x}_9}\hfill \\ {}\vdots & \ddots & \vdots \\ {}\hfill \frac{\partial {f}_9}{\partial {x}_1}\hfill & \hfill \cdots \hfill & \hfill \frac{\partial {f}_9}{\partial {x}_9}\hfill \end{array}\right]\right|}}\underset{\underset{\sim }{x}}{\underbrace{\left[\begin{array}{c}\hfill {x}_1\hfill \\ {}\hfill \vdots \hfill \\ {}\hfill {x}_9\hfill \end{array}\right]}}+\underset{B}{\underbrace{{\underset{\sim }{f}}_{{\underset{\sim }{x}}_e}+{\left.\underset{\sim }{A}\right|}_{{\underset{\sim }{x}}_e}\underset{{\underset{\sim }{x}}_e}{\underbrace{\left[\begin{array}{c}\hfill {x}_{1,e}\hfill \\ {}\hfill \vdots \hfill \\ {}\hfill {x}_{9,e}\hfill \end{array}\right]}}}} $$
(7)

In deviation variables \( \underset{\sim }{\xi }=\underset{\sim }{x}-{\underset{\sim }{x}}_e \) (7) have the next form:

$$ \frac{d\underset{\sim }{\xi }}{dt}={\left.\underset{\sim }{A}\right|}_{{\underset{\sim }{x}}_e}\underset{\sim }{\xi }+{\underset{\sim }{f}}_{{\underset{\sim }{x}}_e} $$
(8)

For the case study the function Jacobian matrix values are:

$$ \underset{\sim }{f}{\underset{\sim }{x}}_e=\left[\begin{array}{c}\hfill -19.43\hfill \\ {}\hfill -166.33\hfill \\ {}\hfill -27.48\hfill \\ {}\hfill 19.44\hfill \\ {}\hfill -68.06\hfill \\ {}\hfill 46.93\hfill \\ {}\hfill 99.97\hfill \\ {}\hfill 99.97\hfill \\ {}\hfill -194461.33\hfill \end{array}\right]\times {10}^{-15}\cong \underset{\sim }{0} $$
(9)
$$ \begin{array}{c}{\left.\underset{\sim }{A}\right|}_{{\underset{\sim }{x}}_e}=\left[\begin{array}{ccccccccc}\hfill -872.98\times {10}^{-3}\hfill & \hfill -45.97\times {10}^{-3}\hfill & \hfill -17.29\times {10}^{-3}\hfill & \hfill -927.18\times {10}^{-6}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\times {10}^{-6}\hfill \\ {}\hfill -692.98\times {10}^{-3}\hfill & \hfill -06.97\times {10}^{-3}\hfill & \hfill -3.15\hfill & \hfill 927.18\times {10}^{-6}\hfill & \hfill -1.97\hfill & \hfill 26.09\times {10}^{-3}\hfill & \hfill 61.28\times {10}^{-3}\hfill & \hfill 61.28\times {10}^{-3}\hfill & \hfill -1.23\times {10}^{-6}\hfill \\ {}\hfill 692.98\times {10}^{-3}\hfill & \hfill 97.16\times {10}^{-3}\hfill & \hfill 3.12\hfill & \hfill -927.18\times {10}^{-6}\hfill & \hfill -283.93\times {10}^{-3}\hfill & \hfill -26.09\times {10}^{-3}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1.95\times {10}^{-9}\hfill \\ {}\hfill 692.98\times {10}^{-3}\hfill & \hfill 3.77\times {10}^{-3}\hfill & \hfill -17.29\times {10}^{-3}\hfill & \hfill -927.18\times {10}^{-6}\hfill & \hfill -150\times {10}^{-3}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\times {10}^{-6}\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -3.14\hfill & \hfill 0\hfill & \hfill 1.82\hfill & \hfill -26.09\times {10}^{-3}\hfill & \hfill -61.28\times {10}^{-3}\hfill & \hfill -61.28\times {10}^{-3}\hfill & \hfill 198.43\times {10}^{-9}\hfill \\ {}\hfill 0\hfill & \hfill 51.19\times {10}^{-3}\hfill & \hfill 3.14\hfill & \hfill 0\hfill & \hfill -283.93\times {10}^{-3}\hfill & \hfill -26.09\times {10}^{-3}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 957.55\times {10}^{-3}\hfill \\ {}\hfill 0\hfill & \hfill 59.82\times {10}^{-3}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 59.82\times {10}^{-3}\hfill & \hfill 0\hfill & \hfill -61.28\times {10}^{-3}\hfill & \hfill -61.28\times {10}^{-3}\hfill & \hfill 960.03\times {10}^{-3}\hfill \\ {}\hfill 0\hfill & \hfill 59.82\times {10}^{-3}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 2.26\hfill & \hfill 0\hfill & \hfill -61.28\times {10}^{-3}\hfill & \hfill -61.28\times {10}^{-3}\hfill & \hfill 960.03\times {10}^{-3}\hfill \\ {}\hfill -839.72\hfill & \hfill -190.22\hfill & \hfill -3.78\times {10}^3\hfill & \hfill 1.12\hfill & \hfill -2.39\times {10}^{-3}\hfill & \hfill 31\hfill & \hfill 74.26\hfill & \hfill 74.26\hfill & \hfill. \mathrm{5.15}\hfill \end{array}\right]\\ {}\\ {}\end{array} $$
(10)

The eigenvalues of Jacobian matrix can be find by (11).

$$ \det \left({\left.\underset{\sim }{A}\right|}_{{\underset{\sim }{x}}_e}-\lambda \underset{\sim }{I}\right)=0 $$
(11)

The eigenvalues are displays in (12).

$$ \underset{\sim }{\lambda }=\left[\begin{array}{c}\hfill -5.15\hfill \\ {}\hfill 3.57\hfill \\ {}\hfill 481.58\times {10}^{-3} + 2.44\mathrm{i}\hfill \\ {}\hfill 481.58\times {10}^{-3} - 2.44\mathrm{i}\hfill \\ {}\hfill -834.84\times {10}^{-3}\hfill \\ {}\hfill -59.79\times {10}^{-3}\hfill \\ {}\hfill -1.082\times {10}^{-3}\ \hfill \\ {}\hfill -516.2\times {10}^{-6}\hfill \\ {}\hfill 99.54\times {10}^{-18}\ \hfill \end{array}\right] $$
(12)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Regalado-Méndez, A., Romero, R.R., Rangel, R.N., Skogestad, S. (2015). Biodiesel Production in Stirred Tank Chemical Reactors: A Numerical Simulation. In: Elleithy, K., Sobh, T. (eds) New Trends in Networking, Computing, E-learning, Systems Sciences, and Engineering. Lecture Notes in Electrical Engineering, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-319-06764-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06764-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06763-6

  • Online ISBN: 978-3-319-06764-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics