Skip to main content

Coupling of Trajectories for Human–Robot Cooperative Tasks

  • Chapter
  • First Online:
Advances in Robot Kinematics
  • 3678 Accesses

Abstract

Since human motion is not completely repeatable, the synthesis of robot trajectories for human–robot cooperation must allow for easy modulation. This should take place by taking into account the external sensory feedback that enables interpretation of the person’s intentions. In this chapter we present a method for coupling of robot trajectories to the measured force feedback arising from the interaction with the environment, where the environment can be an object, a robot, or a person. The algorithm is based on Dynamic Movement Primitives, a kinematic representation of robot trajectories. In the chapter we show how to consider the measured external forces and torques within the kinematic DMP framework. We further develop the approach by introducing iterative learning control in order to anticipate the behavior and achieve minimal errors of motion for stationary conditions. The usefulness of the proposed approach was demonstrated on two KUKA LWR robots performing a bimanual human–robot collaborative task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bristow, D., Tharayil, M., Alleyne, A.: A survey of iterative learning control. IEEE Cont. Syst. Mag. 26(3), 96–114 (2006)

    Article  Google Scholar 

  2. Chiacchio, P., Chiaverini, S., Siciliano, B.: Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system. J. Dyn. Sys. Meas. Cont. 118(4) (1996)

    Google Scholar 

  3. Forte, D., Gams, A., Morimoto, J., Ude, A.: On-line motion synthesis and adaptation using a trajectory database. Robot. Auton. Syst. 60(10), 1327–1339 (2012)

    Article  Google Scholar 

  4. Gams, A., Do, M., Ude, A., Asfour, T., Dillmann, R.: On-line periodic movement and force-profile learning for adaptation to new surfaces. In: 2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 560–565. Nashville (2010)

    Google Scholar 

  5. Gams, A., Ijspeert, A.J., Schaal, S., Lenarčič, J.: On-line learning and modulation of periodic movements with nonlinear dynamical systems. Auton. Robot. 27(1), 3–23 (2009)

    Article  Google Scholar 

  6. Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ijspeert, A., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1398–1403. Washington, DC (2002)

    Google Scholar 

  8. Khatib, O., Yokoi, K., Brock, O., Chang, K., Casal, A.: Robots in human environments. In: Proceedings of the First Workshop on Robot Motion and Control (RoMoCo), pp. 213–221 (1999)

    Google Scholar 

  9. Kober, J., Wilhelm, A., Oztop, E., Peters, J.: Reinforcement learning to adjust parametrized motor primitives to new situations. Auton. Robot. 33, 361–379 (2012)

    Article  Google Scholar 

  10. Kulvicius, T., Biehl, M., Aein, M.J., Tamosiunaite, M., Wrgtter, F.: Interaction learning for dynamic movement primitives used in cooperative robotic tasks. Robot. Auton. Syst. 61, 1450–1459 (2013). doi: http://dx.doi.org/10.1016/j.robot.2013.07.009

  11. Likar, N., Nemec, B., Žlajpah, L.: Virtual mechanism approach for dual-arm manipulation. Robotica 61, 948–959 (2013). doi:10.1017/S0263574713000763

  12. Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: Online movement adaptation based on previous sensor experiences. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 365–371. San Francisco (2011)

    Google Scholar 

  13. Petrič, T., Gams, A., Ijspeert, A.J., Žlajpah, L.: On-line frequency adaptation and movement imitation for rhythmic robotic tasks. Int. J. Robot. Res. 30(14), 1775–1788 (2011)

    Article  Google Scholar 

  14. Stulp, F., Theodorou, E.A., Schaal, S.: Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE Trans. Robot. 28(6), 1360–1370 (2012)

    Article  Google Scholar 

  15. Tamosiunaite, M., Nemec, B., Ude, A., Wörgötter, F.: Learning to pour with a robot arm combining goal and shape learning for dynamic movement primitives. Robot. Auton. Syst. 59(11), 910–922 (2011)

    Article  Google Scholar 

  16. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans. Robot. 26(5), 800–815 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Gams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gams, A., Nemec, B., Petrič, T., Ude, A. (2014). Coupling of Trajectories for Human–Robot Cooperative Tasks. In: Lenarčič, J., Khatib, O. (eds) Advances in Robot Kinematics. Springer, Cham. https://doi.org/10.1007/978-3-319-06698-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06698-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06697-4

  • Online ISBN: 978-3-319-06698-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics