Skip to main content

Maximal Regularity and the Method of Fourier Multipliers

  • Chapter
  • First Online:
Regularity of Difference Equations on Banach Spaces

Abstract

Difference equations in a Banach space X of the form

$$\displaystyle{ \Delta u(n) = Au(n) + f(n) }$$
(2.0.1)

arise in several branches of mathematical physics and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The usefulness of the fixed-point methods for applications has increased enormously by the development of efficient techniques for computing fixed points. In fact, nowadays, fixed-point arguments have become a powerful weapon in the arsenal of applied mathematicians [102].

  2. 2.

    Suppose that X and Y are Banach spaces, then X is finitely representable in Y if for all finite dimensional subspaces E of X and all λ > 1, there is a linear map T: E → Y such that, for all x ∈ E,

    $$\displaystyle{\lambda ^{-1}\vert \vert x\vert \vert _{ X} \leq \vert \vert Tx\vert \vert _{Y } \leq \lambda \vert \vert x\vert \vert _{X}.}$$

    A Banach space X is super-reflexive if it is reflexive and every Banach space that is finitely representable in X is also reflexive. This concept was introduced and studied by James in [104106] (see [33] for additional comments).

  3. 3.

    It is clear that the R-boundedness of the countable set \(\mathcal{T}\) is independent of the order in which we enumerate its element. Thus it is interesting to note that, given any enumeration, the subset of n first members of the sequence are fully representative of all finite subsets of \(\mathcal{T}\) in view of R-boundedness.

  4. 4.

    For a bounded collection \(\mathcal{T} \subset \mathcal{B}(X,Y )\) we denote the Minkowski functional of \(abco(\mathcal{T} )\) by \(\vert \vert \cdot \vert \vert _{\mathcal{T}}: \mathcal{B}(X,Y ) \rightarrow [0,\infty ]\), \(T \rightarrow \vert \vert T\vert \vert _{\mathcal{T}} =\inf \{ t > 0: T \in t \cdot abco(\mathcal{T} )\}\) (see [174]).

  5. 5.

    The first positive result on maximal L p-regularity was obtained by Ladyzhenskaya, Solonnikov, and Ural’tseva [128], where X = L p(G), \(G \subset \mathbb{R}^{n}\) being a bounded domain with smooth boundary, A a strongly elliptic second- order differential operator with continuous coefficients, and 1 < p < . The first abstract result was obtained by de Simon [62] for Hilbert spaces. Specifically, let H be a Hilbert space and A be the generator of an analytic semigroup. Then (2.3.1) has maximal L p-regularity on [0, ). De Simon’s proof employ Plancherel’s theorem which is known to be valid only in the Hilbert space case (see [65, 68]).

  6. 6.

    Let X be a Banach space, \((x_{k})_{k\in \mathbb{N}} \subset X\) is called a Schauder basis if, for every x ∈ X, there is a unique sequence \((a_{k})_{k\in \mathbb{N}} \subset \mathbb{C}\) such that \(x =\sum _{ k=1}^{\infty }a_{k}x_{k}\). It is called an unconditional basis if the series converges unconditionally.

  7. 7.

    A proof of J. Schwartz’s result (Theorem 2.4.2) using the Calderon–Zygmund method can be found in [18].

  8. 8.

    \(\mathcal{D}^{\prime}([0, 2\pi ]; X)\) is the set of all linear mappings \(T\) from \(\mathcal{D}([0, 2\pi ])\) into \(X\) such that \(\vert \vert T(f)\vert \vert _{X} \leq C\sum _{n\leq N}\sup _{t\in [0,2\pi ]}\vert f^{(n)}(t)\vert \) for all \(f \in \mathcal{D}([0, 2\pi ])\) and for some \(N \in \mathbb{N}\) and C > 0 independent of f. Elements in \(\mathcal{D}^{\prime}([0, 2\pi ]; X)\) are called X-valued distributions on \([0, 2\pi ]\). We use the weak topology on \(\mathcal{D}^{\prime}([0, 2\pi ]; X)\), i.e., a sequence \(T_{k}\) converges to \(T\) in \(\mathcal{D}^{\prime}([0, 2\pi ]; X)\) if and only if \(\lim _{k\rightarrow \infty }T_{k}(f) = T(f)\) for all \(f \in \mathcal{D}([0, 2\pi ])\).

  9. 9.

    We recall that a Banach space X is B-convex if it does not contain l 1 n uniformly. This is equivalent to saying that X has Fourier type 1 < p ≤ 2, i.e., the Fourier transform is a bounded linear operator from \(L^{p}(0, 2\pi; X)\) into \(l^{q}(\mathbb{Z},X)\) where 1∕p + 1∕q = 1.

References

  1. R.P. Agarwal, Difference Equations and Inequalities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 228 (Marcel Dekker, New York, 2000)

    Google Scholar 

  2. H. Amann, Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr. 186, 5–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Amann, Linear and Quasilinear Parabolic Problems, Monographs in Mathematics, vol. 89, (Basel, Birkhäuser Verlag, 1995)

    Google Scholar 

  4. W. Arendt, S. Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240, 311–343 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Arendt, S. Bu, Operator-valued Fourier multiplier on periodic Besov spaces and applications. Proc. Edin. Math. Soc. 47(2), 15–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Arendt,Semigroups and Evolution Equations: Functional Calculus, Regularity and Kernel Estimates. Evolutionary Equations, vol. 1, Handbook of Differential Equation (North-Holland, Amsterdam, 2004) pp. 1–85

    Google Scholar 

  7. J.B. Baillon, Caractère borné de certains générateurs de semigroupes linéaires dans les espaces de Banach. C. R. Acad. Sci. Paris Série A 290, 757–760 (1980)

    MATH  MathSciNet  Google Scholar 

  8. A. Bátkai, E. Fasanga, R. Shvidkoy, Hyperbolicity of delay equations via Fourier multiplier. Acta Sci. Math. (Szeged), 69, 131–145 (2003)

    MATH  MathSciNet  Google Scholar 

  9. J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Weissenchaften, vol. 223 (Springer, Berlin, 1976)

    Google Scholar 

  10. E. Berkson, T.A. Gillespie,Spectral decompositions and harmonic analysis on U M D-spaces, Studia Math. 112(1), 13–49 (1994)

    MATH  MathSciNet  Google Scholar 

  11. O.V. Besov, On a certain family of functional spaces, embedding and continuation. Dokl. Akad. Nauk SSSR 126, 1163–1165 (1956)

    MathSciNet  Google Scholar 

  12. S. Blunck, Maximal regularity of discrete and continuous time evolution equations. Studia Math. 146(2), 157–176 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Bourgain, Some remarks on Banach spaces in which martingale differences sequences are unconditional. Arkiv Math. 21, 163–168 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Bourgain, Vector-Valued Singular Integrals and the H 1 -BMO Duality, Probability Theory and Harmonic Analysis (Marcel Dekker, New York, 1986)

    Google Scholar 

  15. S. Bu, Y. Fang, Maximal regularity of second order delay equations in Banach spaces. Sci. China Math. 53(1), 51–62 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Bu, J. Kim, Operator-valued Fourier multiplier on periodic Triebel spaces. Acta Math. Sin. (Engl. Ser.) 21, 1049–1056 (2004)

    Article  MathSciNet  Google Scholar 

  17. D.L. Burkhölder, A geometric characterization of Banach spaces in which martingale differences are unconditional. Ann. Probab. 9, 997–1011 (1981)

    Article  MathSciNet  Google Scholar 

  18. D.L. Burkhölder, Martingale Transforms and the Geometry of Banach Spaces, Lecture Notes in Mathematics, vol. 860, (Springer, Berlin, 1981), p. 35–50

    Google Scholar 

  19. D.L. Burkhölder, A Geometrical Condition that Implies the Existence of Certain Singular Integrals on Banach-Space-Valued Functions, Conference on Harmonic Analysis in Honour of Antoni Zygmund, Chicago 1981, ed. by W. Becker, A.P. Calderón, R. Fefferman, P.W. Jones, (Wadsworth, Belmont 1983), pp. 270–286.

    Google Scholar 

  20. D.L. Burkhölder, Exploration in Martingales and its Applications, Lecture Notes in Mathematics, vol. 1464, (Springer, 1991), pp. 1–66

    Google Scholar 

  21. D.L. Burkhölder, Martingales and Singular Integrals in Banach Spaces, Handbook of the Geometry of Banach Spaces, vol. 1, ed. by W.B. Johnson, J. Lindenstrauss (Elsevier, Amsterdam, 2001)

    Google Scholar 

  22. Ph. Clément, B. de Pagter, F.A. Sukochev, M. Witvliet, Schauder decomposition and multiplier theorems. Studia Math. 138, 135–163 (2000)

    MATH  MathSciNet  Google Scholar 

  23. Ph. Clément, S.O. Londen, G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces. J. Differ. Equat. 196(2), 418–447 (2004)

    Article  MATH  Google Scholar 

  24. Ph. Clément, J. Prüss, in An Operator-Valued Transference Principle and Maximal Regularity on Vector-Valued L p -Spaces, Evolution Equations and their Applications in Physics and Life Sciences, ed. by G. Lumer, L. Weis (Marcel Dekker, New York, 2000) pp. 67–87

    Google Scholar 

  25. C. Cuevas, C. Lizama, Maximal regularity of discrete second order Cauchy problems in Banach spaces. J. Differ. Equat. Appl. 13(12), 1129–1138. (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Cuevas, C. Lizama, Semilinear evolution equations of second order via maximal regularity. Adv. Difference Equat. 2008, 20 (2008), Article ID 316207

    Google Scholar 

  27. L. De Simon, Un’ applicazione della theoria degli integrati singalari allo studio delle equazioni differenziali lineare abtratte del primo ordine. Rend. Sem. Math., Univ. Padova, 205–223 (1964)

    Google Scholar 

  28. R. Denk, M. Hieber, J. Prüss, R−boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 166(788), (2003)

    Google Scholar 

  29. R. Denk, T. Krainer, R−boundedness, pseudodifferential operators, and maximal regularity for some classes of partial differential operators. Manuscripta Math. 124, 319–342 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. B. De Pagter, W.J. Ricker,C(K)-representation and R-boundedness. J. London Math. Soc. 76(2), 498–512 (2007)

    Google Scholar 

  31. G. Dore, L p Regularity for Abstract Differential Equations, Functional Analysis and Related Topics, Lectures Notes Math, vol. 1540, (Springer, New York, 1991) p. 25–38

    Google Scholar 

  32. R. Edwards, G. Gaudry, Littlewood-Paley and Multiplier Theory (Springer, Berlin, 1977)

    Book  Google Scholar 

  33. S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, 3rd edn. (Springer, New York, 2005)

    Google Scholar 

  34. S. Fackler, The Kalton-Lancien theorem revisited: Maximal regularity does not extrapolate. J. Funct. Anal. 266(1), 121–138 (2014)

    Article  MathSciNet  Google Scholar 

  35. M. Girardi, L. Weis, Operator-valued Fourier multiplier theorems on L p(X) and geometry of Banach spaces. J. Funct. Anal. 204(2), 320–354 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Guerre-Delabrière, L p -regularity of the Cauchy problem and the geometry of Banach spaces. Illinois J. Math. 39(4), 556–566 (1995)

    MATH  MathSciNet  Google Scholar 

  37. T. Hytönen, R-boundedness and multiplier theorems. Ph.D. Thesis, Helsinski University of Technology, 2000

    Google Scholar 

  38. T. Hytönen, Convolution, multipliers and maximal regularity on vector-valued Hardy spaces. J. Evol. Equat. 5, 205–225 (2005)

    Article  MATH  Google Scholar 

  39. V.I. Istrăţescu, Fixed Point Theory, An Introduction, Mathematics and Its Applications, vol. 7 (D. Raider Publishing Company, Dordrech, Holland, 1981)

    Google Scholar 

  40. D. Jagermann, Difference Equations with Applications to Queues, vol. 233, Pure and Applied Mathematics (Marcel Dekker, New York, 2000)

    Google Scholar 

  41. R.C. James, Some self dual properties of normed linear spaces. Ann. Math. Studies 69, 159–168 (1972)

    Google Scholar 

  42. R.C. James, Super-reflexive Banach spaces. Can. J. Math. 24, 896–904 (1972)

    MATH  Google Scholar 

  43. W.B. Johnson, J. Lindenstrauss, Handbook of the Geometry of Banach Spaces, vol. 1, ed by W.B. Johnson, J. Lindenstrauss (Elsevier, Amsterdam, 2001)

    Google Scholar 

  44. M. Kac, Statical Independence in Probability, Analysis and Number Theory (American Mathematical Society, 1959)

    Google Scholar 

  45. N. J. Kalton, P. Portal, Remarks on l 1 and l maximal regularity for power bounded operators. J. Aust. Math. Soc. 84(3), 345–365 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  46. N. J. Kalton, G. Lancien, A solution of the problem of L p maximal-regularity. Math. Z. 235, 559–568 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. N. J. Kalton, L. W. Weis, The H -calculus and sums of closed operators. Math. Ann. 321(2), 319–345 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  48. V. Keyantuo, C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces. J. London Math. Soc. 69(3), 737–750 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  49. V. Keyantuo, C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces. Studia Math. 168(1), 25–49 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. V. Keyantuo, C. Lizama, V. Poblete, Periodic solutions of integro-differential equations in vector-valued function spaces. J. Differ. Equat. 246(3), 1007–1037 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  51. P.C. Kunstmann, L. Weis, Maximal L p −Regularity for Parabolic Equations, Fourier Multiplier Theorems and H −Functional Calculus, Functional Analysis Methods for Evolution Equations, Lectures Notes in Mathematics, vol. 1855 (Springer, Berlin 2004), pp. 65–311

    Google Scholar 

  52. O.A. Ladyzenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (American Mathematical Society Translations Mathematics Monographs, Providence, R.I., 1968)

    Google Scholar 

  53. V. Lakshmikantham, D. Trigiante, Theory of Difference Equations, Numerical Methods and Applications, Pure and Applied Mathematics, 2nd edn. (Marcel Dekker, New York, 2002)

    Google Scholar 

  54. Y. Latushkin, F. Räbiger, Operator valued Fourier multiplier and stability of strongly continuous semigroup. Integr. Equat. Oper. Theor. 51(3), 375–394 (2005)

    Article  MATH  Google Scholar 

  55. C. LeMerdy, Counterexamples on L p-maximal regularity. Math. Z. 230, 47–62 (1999)

    Article  MathSciNet  Google Scholar 

  56. J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II (Springer, Berlin, 1996)

    Google Scholar 

  57. H.P. Lotz, Uniform convergence of operator on L and similar spaces. Math. Z. 190(2), 207–220 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  58. B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58, 45–90 (1976)

    MATH  MathSciNet  Google Scholar 

  59. S. Monniaux, Maximal regularity and applications to PDEs. Analytical and numerical aspects of partial differential equations, 247–287, Walter de Gruyter, Berlin, (2009)

    Google Scholar 

  60. G. Pisier, Probabilistic methods in the geometry of Banach spaces, CIME Summer School 1985, Springer Lectures Notes, 1206, 167–241 (1986)

    MathSciNet  Google Scholar 

  61. V. Poblete, Solutions of second-order integro-differential equations on periodic Besov spaces. Proc. Edinb. Math. Soc. 50, 477–492 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  62. P. Portal, Discrete time analytic semigroups and the geometry of Banach spaces. Semigroup Forum 67, 125–144 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  63. P. Portal, Analyse harmonique des fonctions à valeurs dans un espace de Banach pour l’ étude des equations d’évolutions. Ph.D. Thesis, Université de Franche-Comté, 2004

    Google Scholar 

  64. P. Portal, Maximal regularity of evolution equations on discrete time scales. J. Math. Anal. Appl. 304, 1–12 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  65. J.L. Rubio de Francia, in Martingale and Integral Transform of Banach Space Valued Function, ed by J. Bastero, M. San Miguel, Probability and Banach Spaces (Proceeding Zaragoza 1985), Lectures Notes Mathematics, vol. 1221 (Springer, Berlin, 1986), pp. 195–222

    Google Scholar 

  66. H. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces (Geest and Portig, Leipzig, Wiley, Chichester 1987)

    Google Scholar 

  67. P.E. Sobolevskii, Coerciveness inequalities for abstract parabolic equations. Soviet Math. (Doklady), 5, 894–897 (1964)

    Google Scholar 

  68. Z. S̆trkalj, L. Weis, On operator-valued Fourier multiplier theorems. Trans. Amer. Math. Soc. 359(8), 3529–3547 (2007)

    Google Scholar 

  69. H. Triebel, Theory of Function Spaces, Monographs in Mathematics, vol. 78 (Birkhäuser, Basel, 1983)

    Google Scholar 

  70. M.C. Veraar, L.W. Weis, On semi-R-boundedness and its applications. J. Math. Anal. Appl. 363, 431–443 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  71. J. van Nerven, M.C. Veraar, L.W. Weis, Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255(4), 940–993 (2008)

    Article  MathSciNet  Google Scholar 

  72. L. Weis, A New Approach to Maximal L p -Regularity, Lecture notes Pure Applied mathematics, vol. 215 (Marcel Dekker, New York, 2001) pp. 195–214

    Google Scholar 

  73. L. Weis, Operator-valued Fourier multiplier theorems and maximal L p -regularity. Math. Ann. 319, 735–758 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  74. H. Witvliet, Unconditional Schauder decomposition and multiplier theorems. Ph.D. Thesis, Techniche Universitet Delft, 2000

    Google Scholar 

  75. F. Zimmermann, On vector-valued Fourier multiplier theorems Studia Math. 93, 201–222 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, R.P., Cuevas, C., Lizama, C. (2014). Maximal Regularity and the Method of Fourier Multipliers. In: Regularity of Difference Equations on Banach Spaces. Springer, Cham. https://doi.org/10.1007/978-3-319-06447-5_2

Download citation

Publish with us

Policies and ethics