Skip to main content

Optical Metamaterials by Block Copolymer Self-Assembly

  • Book
  • © 2015

Overview

  • Nominated as an outstanding Ph.D. thesis by the University of Cambridge, UK
  • Includes detailed descriptions of the fabrication process
  • A cross disciplinary work that combines polymer science, nanotechnology, plasmonics and materials engineering
  • A fascinating meta material structure is described from the fabrication process to real practical applications
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

Metamaterials are artificially designed materials engineered to acquire their properties by their specific structure rather than their composition. They are considered a major scientific breakthrough and have attracted enormous attention over the past decade. The major challenge in obtaining an optical metamaterial active at visible frequencies is the fabrication of complex continuous metallic structures with nano metric features.

This thesis presents the fabrication and characterization of optical metamaterials made by block copolymer self assembly. This approach allows fabrication of an intriguing and complex continuous 3D architecture called a gyroid, which is replicated into active plasmonic materials such as gold. The optical properties endowed by this particular gyroid geometry include reduction of plasma frequency, extraordinarily enhanced optical transmission, and a predicted negative refractive index. To date, this is the 3D optical metamaterial with the smallest features ever made.

Authors and Affiliations

  • Department of Physics, University of Cambridge, Cavendish Laboratory, Cambridge, United Kingdom

    Stefano Salvatore

About the author

Stefano Salvatore completed his bachelor and master degrees in Materials Engineering at Politecnico di Milano in 2008. He worked on Nanotechnology in the industry sector with Imec (Belgium) and NTT (Japan) before starting his PhD at the University of Cambridge. Here he has took part in the Nano Doctoral Training Centre programme and completed his PhD in Physics in 2013. He is currently working as Process Engineer at Intel Corporation in Ireland.

Bibliographic Information

Publish with us