Skip to main content

Efficient Leakage-Resilient Identity-Based Encryption with CCA Security

  • Conference paper
Pairing-Based Cryptography – Pairing 2013 (Pairing 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8365))

Included in the following conference series:

Abstract

Due to the proliferation of side-channel attacks, lots of efforts have been made to construct cryptographic systems that are still secure even if part of the secret information is leaked to the adversary. Recently, many identity-based encryption (IBE) schemes have been proposed in this context, almost all of which, however, are only proved CPA secure. As far as we know, the IBE scheme presented by Alwen et al. is the unique CCA secure and the most practical one in the standard model. Unfortunately, this scheme suffers from an undesirable shortcoming that the leakage parameter λ and the message length m are subject to λ + m ≤ logp − ω(logκ), where κ is the security parameter and p is the prime order of the underlying group. To overcome this drawback, we designed a new IBE scheme based on Gentry’s IBE in this paper, which is λ-leakage resilient CCA2 secure in the standard model where λ ≤ logp − ω(logκ). In contrast, the leakage parameter λ in our proposal is independent of the size of the message space. Moreover, our scheme is quite practical and almost as efficient as the original scheme. To the best of our knowledge, it is the first practical leakage-resilient fully CCA2 secure IBE scheme in the standard model, tolerating up to (logp − ω(logκ))-bit leakage of the private key, the leakage parameter of which is independent of the message length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657 (2007)

    Google Scholar 

  7. Carter, L., Wegman, M.N.: Universal classes of hash functions (extended abstract). In: STOC, pp. 106–112 (1977)

    Google Scholar 

  8. Chen, Y., Luo, S., Chen, Z.: A new leakage-resilient IBE scheme in the relative leakage model. In: Li, Y. (ed.) DBSec 2011. LNCS, vol. 6818, pp. 263–270. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: ACM Conference on Computer and Communications Security, pp. 152–161 (2010)

    Google Scholar 

  11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Dodis, Y., Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009)

    Google Scholar 

  16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302 (2008)

    Google Scholar 

  18. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

    Google Scholar 

  21. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)

    Google Scholar 

  22. Juma, A., Vahlis, Y., Yung, M.: Multi-location leakage resilient cryptography. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 504–521. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  24. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Liu, S., Weng, J., Zhao, Y.: Efficient public key cryptosystem resilient to key leakage chosen ciphertext attacks. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 84–100. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  27. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)

    Google Scholar 

  30. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, SF., Gu, D., Liu, S. (2014). Efficient Leakage-Resilient Identity-Based Encryption with CCA Security. In: Cao, Z., Zhang, F. (eds) Pairing-Based Cryptography – Pairing 2013. Pairing 2013. Lecture Notes in Computer Science, vol 8365. Springer, Cham. https://doi.org/10.1007/978-3-319-04873-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04873-4_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04872-7

  • Online ISBN: 978-3-319-04873-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics