Skip to main content

Statistical Methods for Detecting Selective Sweeps

  • Chapter
  • First Online:
  • 3047 Accesses

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

The emigration of humankind from Africa and the adoption of agriculture have meant that the selective pressures on humankind have changed in recent evolutionary times. A selective sweep occurs when a positive mutation spreads through a population. For example, a mutation that enables adults to digest lactase has spread through the Northern European population, although it is very rare in the African population. Since neutral alleles that are strongly linked to such a positive mutation also tend to spread through the population, these sweeps leave a signature, a valley of low genetic variation.This article reviews the development of statistical tests for the detection of selective sweeps using genomic data, particularly in the light of recent advances in genome mapping. It also points out directions for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achaz, G. (2008). Testing for neutrality in samples with sequencing errors. Genetics, 179, 1409–1424.

    Article  Google Scholar 

  • Akey, J. M., Zhang, G., Zhang, K., Jin, L., & Shriver, M. D. (2002). Interrogating a high-density snp map for signatures of natural selection. Genome Research, 12, 1805–1814.

    Article  Google Scholar 

  • Avery, P. J., & Henderson, D. A. (1999). Detecting a changed segment in dna sequences. Applied Statistics, 48, 489–503.

    MATH  MathSciNet  Google Scholar 

  • Barnes, M. R. (2006). Navigating the hapmap. Briefings in Bioinformatics, 7, 211–224.

    Article  Google Scholar 

  • Cannings, C. (1974). The latent roots of certain markov chains arising in genetics: A new approach, i. haploid models. Advances in Applied Probability, 6, 260–290.

    Google Scholar 

  • Carlson, C. S., Thomas, D. J., Eberle, M. A., Swanson, J. E., Livingston, R. J., Rieder, M. J., et al. (2005). Genomic regions exhibiting positive selection identified from dense genotype data. Genome Research, 15, 1553–1565.

    Article  Google Scholar 

  • Consortium, T. I. H. (2003). The international hapmap project. Nature, 426, 789–796.

    Article  Google Scholar 

  • Durrett, R., & Schweinsberg, J. (2004). Approximating selective sweeps. Theoretical Population Biology, 66, 129–138.

    Article  MATH  Google Scholar 

  • Fu, Y. X., & Li, W. H. (1992). Statistical test of neutrality of mutations. Genetics, 133, 693–709.

    Google Scholar 

  • Hamblin, M. T., & Di Rienzo, A. (2000). Detection of the signature of natural selection in humans: Evidence from the duffy blood group locus. American Journal of Human Genetics, 66, 1669–1679.

    Article  Google Scholar 

  • Hein, J., Schierup, M., & Wiuf, C. (2004). Gene genealogies, variation and evolution: A primer in coalescent theory. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Hoggart, C. J., Chadeau-Hyam, M., Clark, T. G., Lampariello, R., Whittaker, J. C., De Iorio, M., et al. (2007). Sequence-level population simulations over large genomic regions. Genetics, 177, 1725–1731.

    Article  Google Scholar 

  • Hudson, R. R. (2002). Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics, 18, 337–338.

    Article  Google Scholar 

  • Husmeier, D., & McGuire, G. (2002). Detecting recombination with mcmc. Bioinformatics, 18, 345–353.

    Article  Google Scholar 

  • Innan, H., & Kim, Y. (2004). Pattern of polymorphism after strong artificial selection in a domestication event. Proceedings of the National Academy of Sciences, 101, 10667–10672.

    Google Scholar 

  • Innan, H., & Kim, Y. (2008). Detection of local adaptation using the joint sampling of polymorphism data in the parental and derived population. Genetics, 179, 1713–1720.

    Article  Google Scholar 

  • Jensen, J. D., Kim, Y., DuMont, V. B., Aquadro, C. F., & Bustamante, C. D. (2005). Distinguishing between selective sweeps and demography using dna polymorphism data. Genetics, 170, 1401–1410.

    Article  Google Scholar 

  • Jensen, J. D., Thornton, K. R., & Aquadro, C. F. (2008). Inferring selection in partially sequenced regions. Molecular and Biological Evolution, 25, 438–446.

    Article  Google Scholar 

  • Jensen, J. D., Thornton, K. R., Bustamante, C. D., & Aquadro, C. F. (2007). On the utility of linkage disequilibrium as a statistic for identifying targets of positive selection in nonequilibrium populations. Genetics, 176, 2371–2379.

    Article  Google Scholar 

  • Johnson, P. L. F., & Slatkin, M. (2006). Inference of population genetic parameters in metagenomics: A clean look at messy data. Genome Research, 16, 1320–1327.

    Article  Google Scholar 

  • Kim, Y., & Nielsen, R. (2004). Linkage disequilibrium as a signature of selective sweeps. Genetics, 167, 1513–1524.

    Article  Google Scholar 

  • Kim, Y., & Stepham, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics, 160, 765–777.

    Google Scholar 

  • Kimura, M. (1971). Theoretical foundation of population genetics at the molecular level. Theoretical Population Biology, 2, 174–208.

    Article  MATH  Google Scholar 

  • Kimura, R., Fujimoto, A., Tokunaga, K., & Ohashi, J. (2007). A practical genome scan for population-specific strong selective sweeps that have reached fixation. PLoS One, 2, e286.

    Article  Google Scholar 

  • Lewontin, R. C., & Krakauer, J. (1973). Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 74, 175–195.

    Google Scholar 

  • Macpherson, J. M., González, J., Witten, D. M., Davis, J. C., Rosenberg, N. A., Hirsh, A. E., et al. (2008). Nonadaptive explanations for signatures of partial selective sweeps in drosophila. Molecular and Biological Evolution, 25, 1025–1042.

    Article  Google Scholar 

  • Maynard Smith, J., & Haigh, J. (1974). The hitchhiking effect of a favourable gene. Genetics, 23, 23–35.

    Article  Google Scholar 

  • McVean, G., Spencer, C. C. A., & Chaix, R. (2005). Perspectives on human genetic variation from hapmap project. PLoS Genetics, 1, e54.

    Article  Google Scholar 

  • Möller, D. A., Tenaillon, M. I., & Tiffin, P. (2007). Population structure and its effects on patterns of nucleotide polymorphism in teosinte. Genetics, 176, 1799–1809.

    Article  Google Scholar 

  • Neuhauser, C., & Krone, S. M. (1997). The genealogy of samples in models with selection. Genetics, 145, 519–534.

    Google Scholar 

  • Nielsen, R., Hubisz, M. J., & Clark, A. G. (2004). Reconstituting the frequency spectrum of ascertained snp data. Genetics, 168, 2373–2382.

    Article  Google Scholar 

  • Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G., & Bustamante, C. (2005). Genomic scans for selective sweeps using snp data. Genome Research, 15, 1566–1575.

    Article  Google Scholar 

  • Padhukasahasram, B., Marjoram, P., Wall, J. D., Bustamante, C. D., & Nordborg, M. (2008). Exploring population genetic models with recombination using efficient forward-time simulations. Genetics, 178, 2417–2427.

    Article  Google Scholar 

  • Pan, J., & MacKenzie, G. (2003). On modelling mean-covariance structures in longitudinal studies. Biometrika, 90, 239–244.

    Article  MATH  MathSciNet  Google Scholar 

  • Pfaffelhuber, P., Lehnert, A., & Stephan, W. (2008). Linkage disequilibrium under genetic hitchhiking in finite populations. Genetics, 179, 527–537.

    Article  Google Scholar 

  • Project, S. S. (2004). SeattleSNPs. NHLBI Program for Genomic Applications. Seattle, WA: SeattleSNPs. http://pga.gs.washington.edu

  • Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z., Richter, D. J., Schaffner, S. F., et al. (2002). Detecting recent positive selection in the human genome from haplotype structure. Nature, 419, 832–837.

    Article  Google Scholar 

  • Slatkin, M. (2000). A coalescent view of population structure. In R. S. Singh & C. B. Krimbas (Eds.), In evolutionary genetics. New York: Cambridge University Press.

    Google Scholar 

  • Spencer, C. A., & Coop, G. (2004). Selsim: A program to simulate population genetic data under coalescent models. Bioinformatics, 20, 3673–3675.

    Article  Google Scholar 

  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by dna polymorphism. Genetics, 123, 585–595.

    Google Scholar 

  • Teshima, K. M., Coop, G., & Przeworski, M. (2006). How reliable are empirical genomic scans for selective sweeps? Genome Research, 16, 702–712.

    Article  Google Scholar 

  • Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A map of recent positive selection in the human genome using empirical scores. PLoS Biology, 4, e72.

    Article  Google Scholar 

  • Williamson, S. H., Hernandez, R., Fledel-Alon, A., Zhu, L., Nielsen, R., & Bustamante, C. D. (2005). Simultaneous inference of selection and population growth from patterns of variation in the human genome. Proceedings of the National Academy of Sciences, 102, 7882–7887.

    Google Scholar 

  • Yamasaki, M., Tenaillon, M. I., Bi, I. V., Schroeder, S. G., Sanchez-Villeda, H., Doebley, J. F., et al. (2005). A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell, 17, 2859–2872.

    Article  Google Scholar 

  • Zeng, K., Shi, S., & Wu, C. I. (2007). Compound tests for the detection of hitchhiking under positive selection. Molecular and Biological Evolution, 24, 1898–1908.

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in the Department of Mathematics & Statistics at the University of Limerick, Ireland, and was supported by Science Foundation Ireland, Grant No. 07/MI/012 (BIO-SI project, www3.ul.ie/bio-si).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ramsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ramsey, D. (2014). Statistical Methods for Detecting Selective Sweeps. In: MacKenzie, G., Peng, D. (eds) Statistical Modelling in Biostatistics and Bioinformatics. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-04579-5_13

Download citation

Publish with us

Policies and ethics