Skip to main content

Origin of Prokaryotes and Eukaryotes

  • Chapter
  • First Online:
  • 1629 Accesses

Abstract

The fundamental desire to understand the origin of life is demonstrated by the fact that essentially all human cultures contain a story of how life began. From the tribes of ancient times to the mythologies of more modern cultures, there are countless stories of the origin of life. Some are based in pagan beliefs, while others are based on creation resulting from a holy deity. This collection of myths, legends, and tribal knowledge handed down over generations is the collective expression of how man has attempted to explain his world and his place in it. What is common to all these cultures is that their specific story of how life began is accepted without question. The role of the adults is simply to teach the story to the children.

The past the finite greatness of the past/For what is the present after all but a growth out of the past.

—Walt Whitman

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alegado, R. A., Brown, L. W., Cao, S., et al. (2012). A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife, 1, e00013.

    Google Scholar 

  • Andersson, S. G. E., Zomorodipour, A., Andesson, J. O., et al. (1998). The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature, 396, 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Andras, P., & Andras, C. (2005). The origins of life—the ‘protein interaction world’ hypothesis: Protein interactions were the first form of self-reproducing life and nucleic acids evolved later as memory molecules. Medical Hypotheses, 64, 678–688.

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck, M. W. (1898). Über ein Contagium vivum fluidum als Ursache der Fleckenkrankheit der Tabaksblätter. Verhandelingen der Koninklyke akademie van Wettenschappen te Amsterdam 65, 1–22 (in German). Translated into English in J. Johnson (Ed.), (1942). Phytopathological classics (Vol. 7, pp. 33–52). St. Paul, Minnesota: American Phytopathological Society.

    Google Scholar 

  • Bell, P. J. L. (2001). Viral eukaryogenesis: Was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution, 53, 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Bernal, J. D., & Fankuchen, I. (1941). X-ray and crystallographic studies of plant virus preparations. Journal of General Physiology, 25, 111–146.

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt, H. S. (2012). The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biol Direct, 7, 23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonner, J. T. (1998). The origins of multicellularity. Integrative Biology: Issues, News, and Reviews, 1, 27–36.

    Article  Google Scholar 

  • Bordenave, G. (2003). Louis Pasteur (1822–1895). Microbes and Infection. Institut Pasteur, 5, 553–560.

    Article  CAS  Google Scholar 

  • Brune, A. (2011). Microbial symbioses in the digestive tract of lower termites. In: E. Rosenberg, & U. Gophna (Eds.), Beneficial Microorganisms in Multicellular Life Forms (pp. 3–25). Springer: Heidelberg.

    Google Scholar 

  • Callahan, M. P., Smith, K. E., Cleaves, H. J., et al. (2011). Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences, 108, 13995–13998 (USA).

    Article  CAS  Google Scholar 

  • Cech, T. R., Zaug, A. J., & Grabowski, P. J. (1981). In vitro splicing of the ribosomal RNA precursor of Tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell, 27, 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., et al. (1995). Microbial biofilms. Annual Review of Microbiology, 49, 711–745.

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. H., & Orgel, L. E. (1973). Directed panspermia. Icarus, 19, 341–346.

    Article  Google Scholar 

  • D’Argenio, B., Giuseppe, G., & del Gaudio, R. (2001). Microbes in rocks and meteorites: A new form of life unaffected by time, temperature, pressure. Rendiconti Lincei, 12, 51–68.

    Article  Google Scholar 

  • Dehority, B. A. (2003). Rumen microbiology. Nottingham: Nottingham University Press.

    Google Scholar 

  • Domazet-Loso, T., & Tautz, D. (2008). An ancient evolutionary origin of genes associated with human genetic diseases. Molecular Biology and Evolution, 25, 2699–2707.

    Article  CAS  PubMed  Google Scholar 

  • Dworkin, M. (1996). Recent advances in the social and developmental biology of the myxobacteria. Microbiological Reviews, 60, 70–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emerman, M., & Malik, H. S. (2010). Paleovirology: Modern consequences of ancient viruses. PLoS Biology, 8(2), e1000301. doi:10.1371/journal.pbio.1000301.

  • Fagan, T. F., & Hastings, J. W. (2002). Phylogenetic analysis indicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Molecular Biology and Evolution, 19, 1203–1207.

    Article  CAS  PubMed  Google Scholar 

  • Fedonkin, M. A. (2003). The origin of the metazoa in the light of the proterozoic fossil record. Paleontological Research, 7, 9–41.

    Article  Google Scholar 

  • Filée, J., Forterre, P., & Laurent, J. (2003). The role played by viruses in the evolution of their hosts: A view based on informational protein phylogenies. Research in Microbiology, 154, 237–243.

    Article  PubMed  Google Scholar 

  • Forterre, P. (2006). Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: A hypothesis for the origin of cellular domain. Proceedings of the National Academy of Sciences of the United States of America, 103, 3669–3674.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forterre, P. (2013). The virocell concept and environmental microbiology. ISME Journal, 7, 233–236.

    Article  CAS  PubMed  Google Scholar 

  • Fuerst, J. A. (1995). The planctomycetes: Emerging models for microbial ecology, evolution and cell biology. Microbiology, 141, 1493–1506.

    Article  CAS  PubMed  Google Scholar 

  • Fuerst, J. A. (2010). Beyond prokaryotes and eukaryotes: Planctomycetes and cell organization. Nature Education, 3(9), 44.

    Google Scholar 

  • Fuerst, J. A., & Sagulenko, E. (2011). Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nature Reviews Microbiology, 9, 403–413.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, W. (1986). The RNA world. Nature, 319, 618.

    Article  Google Scholar 

  • Goldman, B. S., Nierman, W. C., Kaiser, D., et al. (2006). Evolution of sensory complexity recorded in a myxobacterial genome. Proceedings of the National Academy of Sciences, 103, 15200–15205 (USA).

    Article  CAS  Google Scholar 

  • Grosberg, R. K., & Strathmann, R. R. (2007). The evolution of multicellularity: A minor major transition. Annual Review of Ecology Evolution and Systematics, 38, 621–654.

    Article  Google Scholar 

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., et al. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35, 849–857.

    Article  CAS  PubMed  Google Scholar 

  • Iwanowski, D. (1892). Über die Mosaikkrankheit der Tabakspflanze. Bulletin Scientifique publié par l’Académie Impériale des Sciences de Saint-Pétersbourg/Nouvelle Serie III (St. Petersburg), 35, 67–70 (in German & Russian). Translated into English in Jékely, G. (2003). Small GTPases and the evolution of the eukaryotic cell. Bioessays, 25, 1129–1138.

    Google Scholar 

  • Johnston, W., Unrau, P., Lawrence, M., et al. (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292, 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  • Koonin, E., Senkevitch, T. G., & Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biology Direct, 1, 29. doi:10.1186/1745-6150-1-29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazcano, A., Guerrero, R., Margulis, L., et al. (1988). The evolutionary transition from RNA to DNA in early cells. Journal of Molecular Evolution, 27, 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Lwoff, A. (1967). Principles of classification and nomenclature of viruses. Nature, 215, 13–14.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, W. L., Munakata, N., Horneck, G., et al. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64, 548–572.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin, W. (2005). Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Current Opinion in Microbiology, 8, 630–637.

    Article  CAS  PubMed  Google Scholar 

  • Martin, W., Rujan, T., Richlyet, E., et al. (2002). Evolutionary analysis of arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 99, 12246–12251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oró, J., & Kamat, S. (1961). Amino-acid synthesis from hydrogen cyanide under possible primitive Earth conditions. Nature, 190, 442–443.

    Article  PubMed  Google Scholar 

  • Pace, N. R., Sapp, J., & Goldenfeld, N. (2012). Phylogeny and beyond: Scientific, historical, and conceptual significance of the first tree of life. Proceedings of the National Academy of Sciences of the United States of America, 109, 1011–1018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papineau, D., Walker, J. J., Mojzsis, S. J., et al. (2005). Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Applied and Environment Microbiology, 71, 4822–4832.

    Article  CAS  Google Scholar 

  • Parfreya, L. W., Lahra, D. J. G., Knoll, A. H., et al. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences, 108, 13624–13629 (USA).

    Article  Google Scholar 

  • Peng, X., Blum, H., She, Q., et al. (2001). Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: Relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses. Virology, 291, 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Perasso, R., Baroin, A., Qu, L. H., et al. (1989). Origin of the algae. Nature, 339, 142–144.

    Article  CAS  PubMed  Google Scholar 

  • Peretóa, J., López-García, P., & Moreria, D. (2004). Ancestral lipid biosynthesis and early membrane evolution. Trends in Biochemical Sciences, 29, 469–477.

    Article  Google Scholar 

  • Philippe, N., Legendre, M., Doutre, G., et al. (2013). Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science, 341, 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Ricardo, A., & Szostak, R. A. (2009). The origin of life on earth. Scientific American, 301(3), 54–61.

    Article  CAS  PubMed  Google Scholar 

  • Reeve, J. N. (2003). Archaeal chromatin and transcription. Molecular Microbiology, 48, 587–598.

    Article  CAS  PubMed  Google Scholar 

  • Rohwer, F., & Youle, M. (2011). Consider something viral in your search. Nature Reviews Microbiology, 9, 308–309.

    Article  CAS  Google Scholar 

  • Rokas, A. (2008). Multicellularity and the early history of the genetic toolkit for animal development. Annual Review of Genetics, 42, 235–251.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg, E., Keller, K. H., & Dworkin, M. (1977). Cell density dependent growth of Myxococcus xanthus on casein. Journal of Bacteriology, 129, 770–777.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sagan, L. (1967). On the origin of mitosing cells. Journal of theoretical biology, 14, 225–274.

    Article  CAS  Google Scholar 

  • Schaefer, L., & Fegley, B. (2010). Chemistry of atmospheres formed during accretion of the earth and other terrestrial planets. Icarus, 208, 438–448.

    Article  CAS  Google Scholar 

  • Schlesner, H. (1994). The development of media suitable for the microorganisms morphologically resembling Planctomyces spp., Pirellula spp., and other Planctomycetales from various aquatic habitats using dilute media. Systematic and Applied Microbiology, 17, 135–145.

    Article  Google Scholar 

  • Siegl, A., Kamke, J., Hochmuth, T., et al. (2010). Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME Journal, 5, 61–70.

    Article  PubMed  Google Scholar 

  • Simonson, A. B., Servin, J. A., Skophammer, R. G., et al. (2005). Decoding the genomic tree of life. Proceedings of the National Academy of Sciences of the United States of America, 102, 6608–6613.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein, L. D. (2004). Human genome: End of beginning. Nature, 431, 915–916.

    Google Scholar 

  • Taylor, M. W., Radax, R., Steger, D., et al. (2007). Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews, 71, 295–347.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villarreal, L. P.(2004) Are viruses alive? Scientific American, 291, 100–105.

    Google Scholar 

  • Wacey, D., Kilburn, M. R., Saunders, M., et al. (2011). Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience, 4, 698–702.

    Article  CAS  Google Scholar 

  • Wächtershäuser, G. (2010). Chemoautotrophic origin of life: The iron-sulfur world hypothesis. In L. L. Barton, M. Mandl, & A. Loy (Eds.), Geomicrobiology: Molecular and environmental perspective (pp. 1–35). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Waggoner, B. M. (2001). Eukaryotes and multicells: Origin. In Encyclopedia of Life Sciences. Chichester: Wiley.

    Google Scholar 

  • Wessner, D. R. (2010). The origins of viruses. Nature Education, 3(9), 37.

    Google Scholar 

  • Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74, 5088–5090.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wommack, K. E., Bench, S. R., Bhavsar, J., et al. (2009). Isolation independent methods of characterizing phage communities: Characterizing a metagenome. Methods in Molecular Biology, 502, 279–289.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, C., Kuznetsov, Y. G., Sun, S. L., et al. (2009). Structural studies of the giant mimivirus. PLoS Biol, 7, e92.

    Article  PubMed  Google Scholar 

  • Zimmer, C. (2009). On the origin of eukaryotes. Science, 325, 666–678.

    Article  CAS  PubMed  Google Scholar 

  • Zillig, W., Prangishvilli, D., Schleper, C., et al. (1996). Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiology Reviews, 18, 225–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Rosenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosenberg, E., Zilber-Rosenberg, I. (2013). Origin of Prokaryotes and Eukaryotes. In: The Hologenome Concept: Human, Animal and Plant Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-319-04241-1_2

Download citation

Publish with us

Policies and ethics